精英家教网 > 高中数学 > 题目详情
10.如图,四边形ABDC内接于圆,BD=CD,BD⊥AB,过点C的圆的切线与AB的延长线交于点E,BC=BE,AE=2,则AB=$\sqrt{5}$-1.

分析 由已知得AC⊥CD,AC=AB,由BC=BE,得AC=EC.由切割线定理得EC2=AE•BE,由此能求出AB的长.

解答 解:因为BD⊥AB,四边形ABDC内接于圆,
所以AC⊥CD,又BD=CD,可得:AC=AB.
因为BC=BE,
所以∠BEC=∠BCE=∠EAC,
所以AC=EC.
由切割线定理得EC2=AE•BE,即AB2=AE•( AE-AB),
由AE=2,可得:AB2+2 AB-4=0,
解得AB=$\sqrt{5}$-1.
故答案为:$\sqrt{5}$-1.

点评 本题主要考查了弦切角定理、切割线定理的应用,考查了转化思想和数形结合思想,解题时要认真审题,注意弦切角定理、切割线定理的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,AE是圆O的切线,A是切点,AD与OE垂直,垂足是D,割线EC交圆O于B,C,且∠ODC=α,∠DBC=β,则∠OEC=β-α(用α,β表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-2.
(1)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调,求实数a的取值范围;
(2)函数$h(x)=ln(1+{x^2})-\frac{1}{2}f(x)-k$有几个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,直线CD与直线AB交于点F,E在DF上,AE是⊙O的切线,DA平分∠BDE.
(1)证明:AE⊥CD;
(2)如果AB=4,AE=2,求∠BFC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=BC=2,AC⊥BC,点S是侧棱AA1延长线上一点,EF是平面SBC与平面A1B1C1的交线.
(1)求证:EF⊥AC1
(2)求四棱锥A1-BCC1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在平行四边形ABCD中,AB=a,BC=1,∠BAD=60°,E为线段CD(端点C、D除外)上一动点,将△ADE沿直线AE翻折,在翻折过程中,若存在某个位置使得直线AD与BC垂直,则a的取值范围是(  )
A.($\sqrt{2}$,+∞)B.($\sqrt{3}$,+∞)C.($\sqrt{2}$+1,+∞)D.($\sqrt{3}$+1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)用数学归纳法证明:12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$,n是正整数;
(2)用数学归纳法证明不等式:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一周期内,当x=$\frac{π}{4}$时,y取最大值1,当x=$\frac{7π}{12}$时,y取最小值-1.
(1)求函数的解析式y=f(x);
(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象;
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,$\frac{8π}{3}$]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式|x+y|≤1确定的平面区域记为Ω,△ABC的三个顶点分别为A(-1,0)、B(3,0)、C(1,2),若将一个质点随机投入△ABC中,则质点落在区域Ω内的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案