精英家教网 > 高中数学 > 题目详情
19.函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一周期内,当x=$\frac{π}{4}$时,y取最大值1,当x=$\frac{7π}{12}$时,y取最小值-1.
(1)求函数的解析式y=f(x);
(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象;
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,$\frac{8π}{3}$]内的所有实数根之和.

分析 (1)根据题意,算出f(x)的周期T,结合周期公式解得ω,再结合y取最大值1解出φ,即可得到函数的解析式;
(2)直接利用三角函数图象的变换,求解三角函数即可.
(3)由(1)的结论,得函数在[0,$\frac{8π}{3}$]内恰有4个周期,根据正弦函数图象的对称性,得到在[0,$\frac{8π}{3}$]内有6个根且分别关于直线x=$\frac{π}{4}$、x=$\frac{11π}{12}$和x=$\frac{19π}{12}$和x=$\frac{27π}{12}$对称,由此加以计算即可得到所有实数根之和.

解答 解:(1)由题意,得:
周期T=$\frac{2π}{ω}$=2($\frac{7π}{12}$-$\frac{π}{4}$),解得ω=3,
又∵当x=$\frac{π}{4}$时y取最大值1,
∴sin($\frac{3π}{4}$+φ)=1,结合|φ|<$\frac{π}{2}$可得φ=-$\frac{π}{4}$,
因此函数的解析式为f(x)=sin(3x-$\frac{π}{4}$);
(2)函数y=sinx的图象向右平移$\frac{π}{4}$单位,得到y=sin(x-$\frac{π}{4}$),再把函数图象上的点的横坐标变为原来的$\frac{1}{3}$,得到f(x)=sin(3x-$\frac{π}{4}$)的图象.
(3)∵f(x)=sin(3x-$\frac{π}{4}$)的周期为$\frac{2π}{3}$,
∴函数在[0,$\frac{8π}{3}$]内恰有4个周期,
并且方程sin(3x-$\frac{π}{4}$)=a,a∈(0,1)在[0,$\frac{8π}{3}$]内有8个实根,
且x1+x2=$\frac{π}{2}$,
同理可得x3+x4=$\frac{11π}{6}$且x5+x6=$\frac{19π}{6}$,x7+x8=$\frac{9π}{2}$.
∴f(x)在[0,$\frac{8π}{3}$]内的所有实数根之和为:$\frac{π}{2}$+$\frac{11π}{6}$+$\frac{19π}{6}$+$\frac{9π}{2}$=10π.

点评 本题给出三角函数图象满足的条件,求函数的表达式并求f(x)在[0,2π]内的所有实数根之和.着重考查了三角函数的周期公式、图象的对称性和最值点对应的自变量等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求圆O和直线l的直角坐标方程;
(2)求直线l与圆O公共点的一个极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,四边形ABDC内接于圆,BD=CD,BD⊥AB,过点C的圆的切线与AB的延长线交于点E,BC=BE,AE=2,则AB=$\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{3}$,且图象上相邻两个最低点的距离为π.
(1)函数f(x)的解析式;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-π,π]上的值域;
(3)求(2)中g(x)在[$\frac{π}{3}$,$\frac{10π}{3}$]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD,∠DAB=60°,CD⊥AD,CB⊥AB.
(Ⅰ)若2|CB|=|CD|=2,求△ABC的面积;
(Ⅱ)若|CB|+|CD|=3,求|AC|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=2cosx•($\sqrt{3}$sinx-cosx)+1的图象可由函数y=2sin2x的图象向左平移a(a>0)个单位后得到,则实数a的最小值为(  )
A.$\frac{11π}{12}$B.$\frac{π}{12}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角梯形ABCD中,AB∥DC,AB⊥AD,AB=2,AD=DC=1,现将直角梯形绕底AB所在直线旋转一周,由此形成的几何体的体积为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)满足f(x)+f(2016-x)=1,数列{an}中,an=f(n)(n∈N),则数列{an}的前2015项和S2015=(  )
A.2015B.2016C.1008D.$\frac{2015}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.抛掷两次骰子,求:
(1)两次都出现1点的概率;
(2)恰有一次出现1点的概率;
(3)没有出现1点的概率.

查看答案和解析>>

同步练习册答案