分析 由已知求得$\overrightarrow{OA}•\overrightarrow{OP}$及$|\overrightarrow{OP}|$,代入投影公式,对λ分类后利用二次函数求最值.
解答 解:∵$|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=2$,$\overrightarrow{OA}•\overrightarrow{OB}=0$,$\overrightarrow{OP}=λ\overrightarrow{OA}+\frac{μ}{2}\overrightarrow{OB}$,且λ+μ=1,
∴$\overrightarrow{OA}•\overrightarrow{OP}=\overrightarrow{OA}•(λ\overrightarrow{OA}+\frac{1-λ}{2}\overrightarrow{OB})$=$λ{\overrightarrow{OA}}^{2}+\frac{1-λ}{2}\overrightarrow{OA}•\overrightarrow{OB}=λ$.
$|\overrightarrow{OP}|=\sqrt{(λ\overrightarrow{OA}+\frac{1-λ}{2}\overrightarrow{OB})^{2}}$=$\sqrt{{λ}^{2}{\overrightarrow{OA}}^{2}+λ(1-λ)\overrightarrow{OA}•\overrightarrow{OB}+\frac{(1-λ)^{2}}{4}{\overrightarrow{OB}}^{2}}$
=$\sqrt{{λ}^{2}+(1-λ)^{2}}$=$\sqrt{2{λ}^{2}-2λ+1}$.
∴$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影$\frac{\overrightarrow{OA}•\overrightarrow{OP}}{|\overrightarrow{OP}|}$=$\frac{λ}{\sqrt{2{λ}^{2}-2λ+1}}$.
当λ<0时,上式=$-\sqrt{\frac{{λ}^{2}}{2{λ}^{2}-2λ+1}}=-\sqrt{\frac{1}{\frac{1}{{λ}^{2}}-\frac{2}{λ}+2}}$$>-\frac{\sqrt{2}}{2}$;
当λ=0时,上式=0;
当λ>0时,上式=$\sqrt{\frac{{λ}^{2}}{2{λ}^{2}-2λ+1}}=\sqrt{\frac{1}{2{λ}^{2}-2λ+1}}≤1$.
综上,$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围是:$(-\frac{{\sqrt{2}}}{2},1]$.
故答案为:$(-\frac{{\sqrt{2}}}{2},1]$.
点评 本题考点是向量在几何中的应用,综合考查了向量的线性运算,向量的数量积的运算及数量积公式,熟练掌握向量的相关公式是解题的关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 1或$\frac{1}{2}$ | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com