分析 根据一元二次不等式的解法分别求出命题p和q,由p是q的充分不必要条件,可知p⇒q,从而求出a的范围:
解答 解:因为|4x-3|≤1,所以$\frac{1}{2}$≤x≤1,即p:$\frac{1}{2}$≤x≤1.
由x2-(2a+1)x+a2+a≤0,
得(x-a)[(x-(a+1)]≤0,
所以a≤x≤a+1,因为p是q的充分不必要条件,
所以p⇒q,q推不出p.
所以$\left\{\begin{array}{l}{a+1>1}\\{a≤\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{a+1≥1}\\{a<\frac{1}{2}}\end{array}\right.$
解得0≤a≤$\frac{1}{2}$.
所以a的取值范围是[0,$\frac{1}{2}$].
点评 本题考查充分条件、必要条件和充要条件,解题时要认真审题,仔细解答,注意不等式组的解法,此题是一道基础题;
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | e+1 | C. | e | D. | e-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{5}+2}}{2}$ | B. | $\frac{{2\sqrt{5}+3}}{3}$ | C. | $\frac{{2\sqrt{5}}}{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com