精英家教网 > 高中数学 > 题目详情
20.设符号[x]表示不超过x的最大整数,如[${\sqrt{3}}$]=1,[-$\sqrt{2}}$]=-2,又实数x、y满足方程组$\left\{{\begin{array}{l}{y=3[x]+2}\\{y=[x]+4}\end{array}}$,则4x-y的取值范围(  )
A.[-1,3)B.(6,7]C.[6,7)D.[9,13)

分析 由已知求出$\left\{\begin{array}{l}{1≤x<2}\\{y=5}\end{array}\right.$,由此能求出4x-y的取值范围.

解答 解:∵实数x、y满足方程组$\left\{{\begin{array}{l}{y=3[x]+2}\\{y=[x]+4}\end{array}}$,
∴$\left\{\begin{array}{l}{|x|=1}\\{y=5}\end{array}\right.$,∴$\left\{\begin{array}{l}{1≤x<2}\\{y=5}\end{array}\right.$,
∴4≤4x<8,
∴4x-y∈[-1,3).
故选:A.

点评 本题考查代数式的取值范围的求法,是基础题,解题时要认真审题,注意二元一次方程组的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x.
(1)求f($\frac{π}{24}$)的值;
(2)若函数f(x)在区间[-m,m]上是单调递增函数,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点A(-1,-5),B(3,3),直线l的倾斜角是直线AB的倾斜角的2倍,求直线l的斜率为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)求等比数列1,$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,…的前9项和.
(2)如果等差数列{an}的前4项的和是10,前7项的和是28,求其前3项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知=${∫}_{1}^{e}\frac{6}{x}$dx,那么(x2-$\frac{1}{x}$)n的展开式中的常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)是R上的减函数,f(1)=0,则不等式f(x-1)<0的解集为{x|x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列四个命题:
①函数f(x)=1-2sin2$\frac{x}{2}$的最小正周期为2π;
②“x2-4x-5=0”的一个必要不充分条件是“x=5”;
③命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0,则命题“p∧(¬q)”是假命题;
④函数f(x)=x3-3x2+1在点(1,f(1))处的切线方程为3x+y-2=0.
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设实数x,y满足约束条件$\left\{{\begin{array}{l}{y≥\frac{1}{2}x}\\{y≤3x}\\{y≤-x+1}\end{array}}\right.$目标函数z=ax+y仅在点($\frac{1}{4}$,$\frac{3}{4}$)取最大值,则实数a的取值范围为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,正三角形ABC的中线AF与中位线DE相交于点G,已知△A′DE是△ADE绕边DE旋转过程中的一个图形.现给出下列命题:
①恒有直线BC∥平面A′DE;
②恒有直线DE⊥平面A′FG,
③恒有平面A′FG⊥平面A′DE.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案