精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(x,y),则$\overrightarrow{b}$与$\overrightarrow{b}$-$\overrightarrow{a}$的夹角为$\frac{π}{4}$,则|$\overrightarrow{b}$-$\overrightarrow{a}$|的最大值为2.

分析 可作图:设A(1,1),从而$\overrightarrow{OA}=\overrightarrow{a}$,可作$\overrightarrow{OB}=\overrightarrow{b}$,从而$\overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a}$,根据条件便可得到$∠B=\frac{π}{4},OA=\sqrt{2}$,这样在△AOB中,由正弦定理即可得出AB=2sin∠AOB,从而可以得出AB的最大值,即得出$|\overrightarrow{b}-\overrightarrow{a}|$的最大值.

解答 解:如图,设A(1,1),连接OA,则$\overrightarrow{OA}=\overrightarrow{a}$,作$\overrightarrow{OB}=\overrightarrow{b}$,则$\overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a}$;
∵$\overrightarrow{b}$与$\overrightarrow{b}-\overrightarrow{a}$的夹角为$\frac{π}{4}$;
∴$∠B=\frac{π}{4}$,且OA=$\sqrt{2}$;
∴在△AOB中,由正弦定理得,$\frac{AB}{sin∠AOB}=\frac{OA}{sinB}$;
∴$AB=\frac{\sqrt{2}}{sin\frac{π}{4}}•sin∠AOB=2sin∠AOB≤2$,当且仅当$∠AOB=\frac{π}{2}$时取“=”;
∴AB的最大值为2,即$|\overrightarrow{b}-\overrightarrow{a}|$的最大值为2.
故答案为:2.

点评 考查根据点的坐标求向量的坐标,两点间的距离公式,向量夹角的概念,以及正弦定理,正弦函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设全集U={x∈N|x≥1},集合A={x∈N|x2≥3},则∁UA=(  )
A.B.{1}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|(x+1)(x-2)≤0},B={x|x-1>0},则A∩B=(  )
A.[-2,1)B.(1,+∞)C.(1,2]D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在一次导弹实验中,为了确定爆炸点的位置,设立了A,B,C三个观测点,已知B在A的正西方向4a米处,C在A的正南方向a米处.实验中,在B,C两点听到导弹着地时的爆炸声比在A点分别晚2秒和1秒,且声速v=a米/秒,则此导弹爆炸点离A点的距离为3a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD是正方形,DE⊥平面ABE,BE=3DE,DE=3,AB⊥AE.
(I)求证:AB⊥面ADE;
(Ⅱ)求二面角A-BC-E的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的周期为1.5,且f(1)=20,则f(10)的值是20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若$\overrightarrow{a}$=($\frac{7}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{7}{2}$),与$\overrightarrow{a}$,$\overrightarrow{b}$夹角相等模长为1的向量为($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)或(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)(用坐标表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)在平面直角坐标系中,A(-$\frac{5}{13}$,$\frac{12}{13}$)是单位圆上一点,将点A沿单位圆按顺时针方向旋转60°,可到达点B,设OA为角α终边,OB为角β终边,且α,β∈(0,π),求sinβ的值
(2)己知α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(0,$\frac{π}{4}$),cos($α-\frac{π}{4}$)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的各项均为正数,且满足2an+1+$\frac{1}{{a}_{n+1}}$=an$+\frac{2}{{a}_{n}}$(n∈N*),且使得a1=a2016成立的a1的值是1.

查看答案和解析>>

同步练习册答案