精英家教网 > 高中数学 > 题目详情
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)记bn=2an,数列{bn}的前n项和为Sn.求证Sn<2n+1
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(I)等差数列与等比数列的通项公式即可得出;
(II)bn=2an=2n.利用等比数列的前n项和公式可得Sn=2n+1-2.即可证明.
解答: (I)解:设等差数列{an}的公差为d≠0,∵a1=1,且a1,a3,a9成等比数列.∴
a
2
3
=a1a9,即(1+2d)2=1×(1+8d),化为d2-d=0,又d≠0,解得d=1.
∴an=1+(n-1)=n.
(II)证明:bn=2an=2n
∴数列{bn}的前n项和为Sn=
2(2n-1)
2-1
=2n+1-2.∴Sn<2n+1
点评:本题考查了等差数列与等比数列的通项公式及其等比数列的前n项和公式,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为坐标原点O,从每条曲线上各取两个点,将其坐标记录于表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l同时满足条件:(ⅰ)过C2的焦点F;(ⅱ)与C1交于不同两点Q、R,且满足
OQ
OR
?若存在,求出直线l的方程;若不存在,请说明理由;
(Ⅲ)已知椭圆C1的左顶点为A,过A作两条互相垂直的弦AM、AN分别另交椭圆于M、N两点.当直线AM的斜率变化时,直线MN是否过x轴上的一定点,若过定点,请给出证明,并求出该定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x,2,-2),向量
b
=(2,y,4),若
a
b
,则x+y=(  )
A、5B、-5C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
sinx,cosx+sinx),
b
=(2cosx,sinx-cosx),f(x)=
a
b

(1)求函数f(x)的单调递增区间;
(2)当x∈[
24
12
]时,对任意t∈R,不等式mt2+mt+3≥f(x)恒成立,求实数的m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥的主视图与俯视图如图,俯视图是边长是2的正三角形,那么该三棱锥的左视图可能为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,若E、F分别为PC、BD的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=-x3+2x在横坐标为-1的点处的切线为L,则点(3,2)到L的距离是(  )
A、
7
2
2
B、
9
2
2
C、
11
2
2
D、
9
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程x2-2mx+4=0的两根满足一根大于2,一根小于2,则m的取值范围是(  )
A、(-∞,-2)
B、(2,+∞)
C、(-∞,-2)∪(2,+∞)
D、(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
lim
x→m
(x-1)(x-2)
x-m
=1
,则实数m的值为
 

查看答案和解析>>

同步练习册答案