精英家教网 > 高中数学 > 题目详情
20.设△ABC的内角A,B,C所对的边分别为a,b,c,$\overrightarrow{M}$=(a+b,a-c),$\overrightarrow{N}$=(sin(A+B),sinA-sinB),且$\overrightarrow{M}$与$\overrightarrow{N}$共线.(1)求角B;
(2)若b=3且sinA=$\frac{\sqrt{3}}{3}$,求△ABC的面积.

分析 (1)利用两个向量共线的性质,正弦定理和余弦定理求得cosB的值,可得B的值.
(2)利用正弦定理求得a的值,根据sinA的值可得cosA的值,利用两角和的正弦公式求得sinC=sin(A+B)的值,可得△ABC的面积 S=$\frac{1}{2}$•ab•sinC 的值.

解答 解:(1)△ABC中,∵$\overrightarrow{M}$=(a+b,a-c),$\overrightarrow{N}$=(sin(A+B),sinA-sinB),且$\overrightarrow{M}$与$\overrightarrow{N}$共线,
∴(a+b)•(sinA-sinB)-(a-c)•sin(A+B)=0,
利用正弦定理可得(a+b)•(a-b)=(a-c)•c,即a2+c2-b2=ac,
∴cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=$\frac{1}{2}$,∴B=$\frac{π}{3}$.
(2)若b=3,sinA=$\frac{\sqrt{3}}{3}$,则由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$,即$\frac{a}{\frac{\sqrt{3}}{3}}$=$\frac{3}{\frac{\sqrt{3}}{2}}$,∴a=2<b,∴A<B.
由sinA=$\frac{\sqrt{3}}{3}$,可得cosA=$\sqrt{{1-sin}^{2}A}$=$\frac{\sqrt{6}}{3}$,sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{3}}{3}•\frac{1}{2}$+$\frac{\sqrt{6}}{3}•\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}+3\sqrt{2}}{6}$,
∴△ABC的面积 S=$\frac{1}{2}$•ab•sinC=$\frac{1}{2}$•2•3•$\frac{\sqrt{3}+3\sqrt{2}}{6}$=$\frac{\sqrt{3}+3\sqrt{2}}{2}$.

点评 本题主要考查两个向量共线的性质,正弦定理和余弦定理的应用,两角和的正弦公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点P(x,y)的坐标满足$\left\{\begin{array}{l}x+4y-16≤0\\ x+y-4≥0\\ x≤4\end{array}\right.$,O为坐标原点,记|PO|的最大值为m,最小值为n,则双曲线$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1$的离心率为$\frac{\sqrt{33}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=1-$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$的定义域是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)•cos(x+$\frac{π}{4}$)-sin(2x+π).
(Ⅰ) 求f的(x)的最小正周期;
(Ⅱ)若将f(x)的图象向右平移$\frac{π}{12}$个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若数列{an}的前n项和为Sn=3×2n+1,则数列{an}的通项公式是an=$\left\{\begin{array}{l}{7,n=1}\\{3×{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.y=(m2-2m+2)x2m+1是一个幂函数,则m=(  )
A.-1B.1C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Sn是等比数列{an}的前n项的和,若a3+2a6=0,则$\frac{S_3}{S_6}$的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求A∩B,A∪B;
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.

查看答案和解析>>

同步练习册答案