精英家教网 > 高中数学 > 题目详情
8.函数f(x)=1-$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$的定义域是(1,2].

分析 函数f(x)=1-$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$有意义,只需x-1>0,且log${\;}_{\frac{1}{2}}$(x-1)≥0,解不等式即可得到所求定义域.

解答 解:函数f(x)=1-$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$有意义,
只需x-1>0,且log${\;}_{\frac{1}{2}}$(x-1)≥0,
解得x>1且x≤2,
即为1<x≤2,
则定义域为(1,2].
故答案为:(1,2].

点评 本题考查函数的定义域的求法,注意运用偶次根式被开方数非负,对数的真数大于0,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.$\underset{lim}{x→0}$$\frac{atanx+b(1-cosx)}{cln(1-2x)+d(1-{e}^{-{x}^{2}})}$=2,其中a2+c2≠0,则必有(  )
A.b=4dB.b=-4dC.a=4cD.a=-4c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=3,且an+1+1=an2-nan-n(n∈N*).
(1)计算a2,a3,a4的值,由此猜想数列{an}的通项公式(不必证明);
(2)求证:当n≥2时,ann≥4nn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:若x+y≠5,则x≠2或y≠3;命题q:若a<b,则am2<bm2,下列选项中是真命题的为(  )
A.p∧¬qB.¬pC.p∧qD.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x=ln π,y=log52,z=log${\;}_{\frac{1}{2}}}$e则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mlnx+$\frac{3}{2}$x2-4x.
(I)若曲线y=f(x)在x=1处的切线与y轴垂直,求函数f(x)的极值;
(II)设g(x)=x3-4,若h(x)=f(x)-g(x)在(1,+∞)上单调递减,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设△ABC的内角A,B,C所对的边分别为a,b,c,$\overrightarrow{M}$=(a+b,a-c),$\overrightarrow{N}$=(sin(A+B),sinA-sinB),且$\overrightarrow{M}$与$\overrightarrow{N}$共线.(1)求角B;
(2)若b=3且sinA=$\frac{\sqrt{3}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,求实数k的取值范围.
(2)关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的奇函数f(x),当x>0时,f(x)=lg(3x+1),则f(-3)=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

同步练习册答案