精英家教网 > 高中数学 > 题目详情
5.若数列{an}的前n项和为Sn=3×2n+1,则数列{an}的通项公式是an=$\left\{\begin{array}{l}{7,n=1}\\{3×{2}^{n-1},n≥2}\end{array}\right.$.

分析 由Sn=3×2n+1,n=1时,a1=S1;n≥2时,an=Sn-Sn-1,即可得出.

解答 解:∵Sn=3×2n+1,
∴n=1时,a1=S1=3×2+1=7;
n≥2时,an=Sn-Sn-1=3×2n+1-(3×2n-1+1)=3×2n-1
则数列{an}的通项公式是an=$\left\{\begin{array}{l}{7,n=1}\\{3×{2}^{n-1},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{7,n=1}\\{3×{2}^{n-1},n≥2}\end{array}\right.$.

点评 本题考查了数列递推关系、数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.函数$f(x)=Asin(ωx+α)(A>0,ω>0,-\frac{π}{2}<α<\frac{π}{2})$的最小正周期是π,且当x=$\frac{π}{6}$时,f(x)取得最大值5.
(1)求f(x)的解析式及单调减区间;
(2)将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:若x+y≠5,则x≠2或y≠3;命题q:若a<b,则am2<bm2,下列选项中是真命题的为(  )
A.p∧¬qB.¬pC.p∧qD.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mlnx+$\frac{3}{2}$x2-4x.
(I)若曲线y=f(x)在x=1处的切线与y轴垂直,求函数f(x)的极值;
(II)设g(x)=x3-4,若h(x)=f(x)-g(x)在(1,+∞)上单调递减,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设△ABC的内角A,B,C所对的边分别为a,b,c,$\overrightarrow{M}$=(a+b,a-c),$\overrightarrow{N}$=(sin(A+B),sinA-sinB),且$\overrightarrow{M}$与$\overrightarrow{N}$共线.(1)求角B;
(2)若b=3且sinA=$\frac{\sqrt{3}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|x2-x=0},N={y|y2+y=0},则M∪N=(  )
A.B.{0}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,求实数k的取值范围.
(2)关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρsin2θ+4sinθ-ρ=0,直线l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=3+tsinα}\end{array}\right.$(t为参数)过曲线C的焦点,且与曲线C交于M,N两点.
(1)写出曲线C及直线l直角坐标方程;
(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三角形ABC中,AB=AC,AC边上的中线长为3,当三角形ABC的面积最大时,AB的长为(  )
A.$2\sqrt{5}$B.3$\sqrt{6}$C.2$\sqrt{6}$D.3$\sqrt{5}$

查看答案和解析>>

同步练习册答案