| A. | $2\sqrt{5}$ | B. | 3$\sqrt{6}$ | C. | 2$\sqrt{6}$ | D. | 3$\sqrt{5}$ |
分析 设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值时的x即可.
解答 解:设AB=AC=2x,AD=x.![]()
设三角形的顶角θ,则由余弦定理得cosθ=$\frac{(2x)^{2}+{x}^{2}-9}{2×2x×x}$=$\frac{5{x}^{2}-9}{4{x}^{2}}$,
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{4{x}^{2}}$,
根据公式三角形面积S=$\frac{1}{2}$absinθ=$\frac{1}{2}$×2x•2x•$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{4{x}^{2}}$=$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{2}$,
∴当 x2=5时,三角形面积有最大值.此时x=$\sqrt{5}$.
AB的长:2$\sqrt{5}$.
故选:A.
点评 本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | logab•logbc•logca=1 | B. | 函数f(x)=ex满足f(a+b)=f(a)•f(b) | ||
| C. | 函数f(x)=ex满足f(a•b)=f(a)•f(b) | D. | 若xlog34=1,则4x+4-x=$\frac{10}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com