精英家教网 > 高中数学 > 题目详情

如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.

证明略


解析:

  ∵E∈AB,H∈AD,

∴E∈平面ABD,H∈平面ABD.

∴EH平面ABD.

∵EH∩FG=O,∴O∈平面ABD.

同理可证O∈平面BCD,

∴O∈平面ABD∩平面BCD,即O∈BD,

所以B、D、O三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知如图:E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.
(1)求证:EG∥平面BB1D1D;
(2)求证:平面BDF∥平面B1D1H.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E,F,G,H分别是正方体ABCD-A1B1C1D1的棱BC,CC1,C1D1,AA1的中点,求证:
(1)GE∥平面BB1D1D;
(2)平面BDF∥平面B1D1H.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E、F、G、H分别是矩形ABCD的四条边的中点,向矩形ABCD所在的区域投针,则针尖在四边形EFGH内的概率为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)如图,E,F,G,H分别是正方形ABCD各边的中点,将等腰    三角形EFB,FGC,GHD,HEA分别沿其底边折起,使其与原 所在平面成直二面角,则所形成的空间图形中,共有异面直线 段的对数为
28
28

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E、F、G、H分别是四边形ABCD的所在边的中点,若(
AB
+
BC
)•(
BC
+
CD
)=0
,则四边形EFGH是(  )

查看答案和解析>>

同步练习册答案