精英家教网 > 高中数学 > 题目详情
5.已知x,y满足约束条件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ 3x-y-3≤0\end{array}\right.$,目标函数z=x2+y2的最小值为(  )
A.13B.$\sqrt{13}$C.$\frac{4}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 由约束条件画出可行域,利用目标函数的几何意义求最小值.

解答 解:由已知得到可行域如图:
目标函数z=x2+y2的几何意义是区域内的点到原点距离的平方,所以原点到图中AC的距离即为所求,d=$\frac{|-2|}{\sqrt{{2}^{2}+{1}^{2}}}=\frac{2}{\sqrt{5}}$,
所以目标函数z=x2+y2的最小值为$\frac{4}{5}$;
故选C.

点评 本题考查了简单线性规划问题;正确画出可行域是解答的前提,利用目标函数求最值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.用min{a,b}表示a,b两数中的最小值,若f(x)=min{|x|,|x+t|}的图象关于直线x=-$\frac{3}{2}$对称,则t的值为(  )
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若实数x∈Z,y∈Z,满足$\left\{\begin{array}{l}{x<2}\\{y≤3}\\{x+y≥1}\end{array}\right.$,则S=2x+y-1的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列结论中正确的个数是(  )
①当a<0时,(a2)${\;}^{\frac{3}{2}}$=a3
②$\root{n}{{a}^{n}}$=|a|(n>1,n∈N)
③函数y=(x-2)${\;}^{\frac{1}{2}}$-(3x-7)0的定义域是[2,+∞);
④计算[(-$\sqrt{2}$)2]${\;}^{-\frac{1}{2}}$的结果是$\frac{\sqrt{2}}{2}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在底面为正三角形的三棱柱ABC-A1B1C1中,AB=2,AA1⊥平面ABC,E,F分别为BB1,AC的中点.
(1)求证:BF∥平面A1EC;
(2)若AA1=2$\sqrt{2}$,求二面角C-EA1-A的大小.
(2)若AA1=2$\sqrt{2}$,求三棱锥C1-A1EC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}ln({1-x}),x<0\\{({x-1})^3}+1,x≥0\end{array}$,若f(x)≥ax恒成立,则实数a的取值范围是(  )
A.$[{0,\frac{2}{3}}]$B.$[{0,\frac{3}{4}}]$C.[0,1]D.$[{0,\frac{3}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的首项为$\frac{1}{2}$,Sn为数列的前n项和,若S6=2S4,则a10=(  )
A.$\frac{1}{3}$B.$\frac{19}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设数列{an}为等差数列,且a11=$\frac{3π}{8}$,若f(x)=sin2x+2cos2x,记bn=f(an),则数列{bn}的前21项和为21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线y=-4x2,则它的准线方程为(  )
A.y=$\frac{1}{16}$B.y=-$\frac{1}{16}$C.x=2D.x=-2

查看答案和解析>>

同步练习册答案