精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已平面的中点,
(Ⅰ)求的长;
(Ⅱ)求证:面
(Ⅲ)求平面与平面相交所成锐角二面角的余弦值.
(Ⅰ)取的中点,连接


为梯形的中位线,
,所以
所以四点共面……………2分
因为,且面
所以
所以四边形为平行四边形,
所以……………4分
(Ⅱ)由题意可知平面
平面
所以
因为   所以
,所以面;……………6分
(Ⅲ)以为原点,所在直线分别为轴建立空间直角坐标系
 ……7分
的中点,则
易证:平面
平面的法向量为……………8分
设平面的法向量为
 所以……………10分
所以,……………11分
所以平面与平面相交所成锐角二面角的余弦值为.            ……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的个数是                                         (     )        
①PA⊥AD                         
②平面ABC⊥平面PBC
③直线BC∥平面PAE               
④直线PD与平面ABC所成角为
.1个    .2个       .3个     .4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)在平面α内有△ABC,在平面α外有点S,斜线SA⊥AC,SB⊥BC,且
斜线SA、SB与平面α所成角相等。
(1)求证:AC=BC
(2)又设点S到α的距离为4cm,AC⊥BC且AB=6cm,求S与AB的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知多面体中,平面, 分别为的中点.
(Ⅰ)求证:
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱,的中点,作于点
(Ⅰ)证明
(Ⅱ)证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的是     (    )
A.空间三点可以确定一个平面B.三角形一定是平面图形
C.若点A,B,C,D既在平面a内,又在平面b内,则平面a与平面b重合
D.四条边都相等的四边形是平面图形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正四棱柱ABCDA1B1C1D1,底面边长为1,侧棱长为2,EBB1中点,则异面直线AD1A1E所成的角为
A.arccosB.arcsin
C.90°D.arccos

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以A、B、C、D为顶点的正四面体的棱长是1,点P在棱AB上,点Q在棱CD上,则PQ之间最短距离是                                   (    )
A.           B.            C.          D.

查看答案和解析>>

同步练习册答案