精英家教网 > 高中数学 > 题目详情
以A、B、C、D为顶点的正四面体的棱长是1,点P在棱AB上,点Q在棱CD上,则PQ之间最短距离是                                   (    )
A.           B.            C.          D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示的几何体是由以等边三角形为底面的棱柱被平面所截而得,已平面的中点,
(Ⅰ)求的长;
(Ⅱ)求证:面
(Ⅲ)求平面与平面相交所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确的是(  )
A.平行于同一平面的两条直线平行B.与同一平面成等角的两条直线平行
C.与同一平面成相等二面角的两个平面平行D.若平行平面与同一平面相交,则交线平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在三棱锥中,△ABC是边长为4的正三角形,平面,M、N分别为AB、SB的中点。

(1)证明:
(2)求点B到平面CMN的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角,如图.

(I)证明:∥平面
(II)求二面角的余弦值;
(Ⅲ)在线段上是否存在一点,使?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题14分)
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,  
E是PC的中点,作EFPB交PB于点F。

(1)证明:PA//平面EDB;
(2)证明:PB平面EFD。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在长方体ABCD-A1B1C1D1中,经过其对角线BD1的平面分别与棱AA1、CC1相交于E,F两点,则四边形EBFD1的形状为_______                

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥P-ABC中,平面ABC,AB=BC=2,PB=2,则点B到平面PAC的距离是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设棱锥的底面是正方形,且,的面积为,则能够放入这个棱锥的最大球的半径为
A.B.C.D.

查看答案和解析>>

同步练习册答案