精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}的前n项和为Sn,若$\overrightarrow{OB}$=a7$\overrightarrow{OA}$+a2006$\overrightarrow{OC}$,且A、B、C三点共线(该直线不过点O),则S2012等于(  )
A.1006B.2012C.22012D.2-2012

分析 根据平面向量的基本定理得出a7+a2006=1,再利用等差数列的性质与前n项和公式,即可求出S2012的值.

解答 解:∵$\overrightarrow{OB}$=a7$\overrightarrow{OA}$+a2006$\overrightarrow{OC}$,且A、B、C三点共线(该直线不过点O),
∴a7+a2006=1;
∵数列{an}是等差数列,
∴a1+a2012=a7+a2006
∴S2012=$\frac{2012×{(a}_{1}{+a}_{2012})}{2}$=1006.
故选:A.

点评 本题考查了平面向量的基本定理与等差数列的性质、前n项和公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某县电视台决定于2015年元旦前夕举办“弘扬核心价值观,激情唱响中国梦”全县歌手大奖赛,比赛分初赛演唱部分和决赛问答题部分,各位选手的演唱部分成绩频率分布直方分布图(1)如图:已知某工厂的6名参赛人员的演唱成绩得分(满分10分)如茎叶图(2)(茎上的数字为整数部分,叶上的数字为小数部分).
(1)根据频率分布直方分布图和茎叶图评估某工厂6名参赛人员的演唱部分的平均水平是否高于全部参赛人员的平均水平?(计算数据精确到小数点后三位数)
(2)已知初赛9.0分以上的选手才有资格参加决赛,问答题部分为5道题,选手对其依次回答,累计答对3题或答错3题即结束比赛,答对3题者直接获奖,已知该工厂参赛人员甲进入了决赛且答对每道题的概率为这6位中任意抽取2位演唱得分分差大于0.5的概率,且各题对错互不影响,设甲决赛获奖答题的个数为X,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若集合A={1,sinθ},B={$\frac{1}{2}$,2},则”θ=$\frac{5π}{6}$”是”A∩B={$\frac{1}{2}$}”的充分不必要.条件.(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于(  )
A.16cm3B.20cm3C.24cm3D.28cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别是a,b,c,若c-acosB=(2a-b)cosA,则△ABC的形状是等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面ABCD是菱形,∠DAB=60°,E是AD的中点,PA=PD.
(I)求证:平面PBE⊥平面ABCD;
(Ⅱ)若平面PBC⊥平面ABCD,PB=AB,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.有10个零件,其中6个一等品,4个二等品,若从10个零件中任意取3个,那么至少有1个一等品的不同取法有116种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆C:x2+y2-2x=0,在圆C中任取一点P,则点P的横坐标小于1的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{π}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知定义在R上的函数f(x)的图象关于y轴对称,且满足f(x+2)=f(-x),若当x∈[0,1]时,f(x)=3x-1,则f(log${\;}_{\frac{1}{3}}$10)的值为$\frac{10}{27}$.

查看答案和解析>>

同步练习册答案