分析 (1)欲证AB1∥平面BC1D,只需证明AB1平行平面BC1D中的一条直线,利用三角形的中位线平行与第三边,构造一个三角形AB1C,使AB1成为这个三角形中的边,而中位线OD恰好在平面BC1D上,就可得到结论.
(2)作BE⊥AC,垂足为E,推导出AA1⊥BE,BE⊥平面AA1C1C.由此能求出四棱锥B-AA1C1D的体积.
解答 证明:连接B1C,设B1C与BC1相交于点O,连接OD,![]()
∵四边形BCC1B是平行四边形,
∴点O为B1C的中点,
∵D为AC的中点,
∴OD为△AB1C的中位线,
∴OD∥AB1,
∵OD?平面BC1D,AB1?平面BC1D,
∴AB1∥平面BC1D
(2)作BE⊥AC,垂足为E,
∵侧棱AA1⊥底面ABC,BE?底面ABC
∴AA1⊥BE
∵AA1∩AC=A
∴BE⊥平面AA1C1C.
在Rt△ABC中,BE=$\frac{AB•BC}{AC}$=$\frac{6}{\sqrt{13}}$,
∴四棱锥B-AA1C1D的体积V=$\frac{1}{3}×\frac{1}{2}$×(A1C1+AD)•AA1•BE=3.
点评 本题以三棱柱为载体,考查线面平行,考查线面角,考查面面角,解题的关键是正确运用线面平行的判定,作出线面角,面面角,计算较繁,需要细心.
科目:高中数学 来源: 题型:选择题
| A. | 99 | B. | 88 | C. | 77 | D. | 66 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=3x | B. | y=2x(-1≤x<1) | ||
| C. | $y=\left\{\begin{array}{l}{x^2}+x,x>0\\{x^2}-x,x<0\end{array}\right.$ | D. | y=2x-2-x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $8-\frac{π}{3}$ | B. | $8-\frac{π}{6}$ | C. | $\frac{20}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com