分析 (1)求出函数的导数,然后分a≤0与a>0两种情况讨论,从而得到f′(x)的符号,可得f(x)在其定义域(0,+∞)内的单调性,最后综合可得答案;
(2)求出a的值,问题转化为b≤1-$\frac{1}{x}$-$\frac{2lnx}{x}$在(0,+∞)恒成立,构造函数g(x),根据函数的单调性求出g(x)的最小值,从而求出b的范围即可.
解答 解:(1)f′(x)=1-$\frac{a}{x}$=$\frac{x-a}{x}$(x>0),
当a≤0时,f'(x)>0,在(0,+∞)上为增函数,
当a>0时,f′(x)=$\frac{x-a}{x}$=0,
令f′(x)>0,解得:x>a,令f′(x)<0,解得:0<x<a,
∴f(x)在(0,a)上为减函数,在(a,+∞)递增;
(2)f′(x)=1-$\frac{a}{x}$,f′(2)=1-$\frac{a}{2}$=0,解得:a=2,
∴f(x)=x+1-2lnx,
对?x∈(0,+∞),f(x)≥bx-2恒成立,
即x+1-2lnx≥bx-2在(0,+∞)恒成立,
即b≤1-$\frac{1}{x}$-$\frac{2lnx}{x}$在(0,+∞)恒成立,
令g(x)=1-$\frac{1}{x}$-$\frac{2lnx}{x}$,g′(x)=$\frac{1}{{x}^{2}}$-$\frac{2-2lnx}{{x}^{2}}$=$\frac{2lnx-1}{{x}^{2}}$,
令g′(x)>0,解得:x>$\sqrt{e}$,令g′(x)<0,解得:0<x<$\sqrt{e}$,
∴g(x)在(0,$\sqrt{e}$)递减,在($\sqrt{e}$,+∞)递增,
∴g(x)min=g($\sqrt{e}$)=$\frac{2-2\sqrt{e}}{e}$,
故b≤$\frac{2-2\sqrt{e}}{e}$.
点评 本题考查利用导数研究函数的极值,考查恒成立问题,着重考查分类讨论思想与构造函数思想的应用,体现综合分析问题与解决问题能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [e,+∞) | B. | $[\frac{e^2}{2},+∞)$ | C. | $[\frac{e^2}{2},{e^2})$ | D. | [e2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com