精英家教网 > 高中数学 > 题目详情
2.已知m,n表示两条不同的直线,α,β表示两个不同的平面,则下列四个命题中,所有正确命题的序号为②③
①若m⊥n,n?α,则m⊥α;            
②若α∥β,n?α,则n∥β;
③若m⊥α,m∥β,则α⊥β;            
④若m∥α,n?α,则m∥n.

分析 利用空间线面关系定理分别分析各命题进行选择.

解答 解:①若m⊥n,n?α,则m与α位置关系不确定;故①错误;            
②若α∥β,n?α,根据面面平行的性质得到n∥β;故②正确;
③若m⊥α,m∥β,利用线面垂直以及线面平行的性质结合面面垂直的判定定理可以得到α⊥β;   故③正确;         
④若m∥α,n?α,则m与n可能平行或者异面;故④错误.
故答案为:②③;

点评 本题考查了空间线面关系、面面关系的判定;熟练掌握线面关系定理进行判断是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知${({\sqrt{2}x+\root{3}{3}y+z})^6}$的展开式中,系数为有理数的项的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若规定E={a1,a2,…,a10}的子集{at1,at2,…,ak}为E的第k个子集,其中$k={2^{{t_1}-1}}+{2^{{t_2}-1}}+…+{2^{{t_m}-1}}$,则E的第211个子集是{a1,a2,a5,a7,a8}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在正方体ABCD-A1B1C1D1中,M为BB1的中点,则直线MC与平面ACD1所成角的正弦值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax2-bx(a,b∈R),g(x)=$\frac{2x-2}{x+1}$-lnx.
(1)当a=-1时,f(x)与g(x)在定义域上的单调性相反,求b的取值范围;
(2)当a,b都为0时,斜率为k的直线与曲线y=f(x)交A(x1,y1),B(x2,y2)(x1<x2)于两点,求证:x1<$\frac{1}{k}<{x_2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c.已知C=$\frac{2π}{3}$,c=5,a=$\sqrt{5}$bsinA.
(1)求b的值;
(2)求tan(B+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,若AB=4,AC=6,D为边BC的中点,O为△ABC的外心,则$\overrightarrow{AO}•\overrightarrow{AD}$=(  )
A.13B.24C.26D.52

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\sqrt{x+1}+\frac{1}{x-2}$的定义域为[-1,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}和等比数列{bn}满足a1+b1=7,a2+b2=4,a3+b3=5,a4+b4=2,则an+bn=7-n+(-1)n-1,n∈N*.

查看答案和解析>>

同步练习册答案