精英家教网 > 高中数学 > 题目详情
14.在△ABC中,若AB=4,AC=6,D为边BC的中点,O为△ABC的外心,则$\overrightarrow{AO}•\overrightarrow{AD}$=(  )
A.13B.24C.26D.52

分析 由已知把$\overrightarrow{AO}$用$\overrightarrow{AB}、\overrightarrow{AC}$表示,展开数量积,结合向量在向量方向上投影的概念得答案.

解答 解:如图,

∵D为边BC的中点,∴$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,
又O为△ABC的外心,且AB=4,AC=6,
∴$\overrightarrow{AO}•\overrightarrow{AD}$=$\overrightarrow{AO}•\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})=\frac{1}{2}\overrightarrow{AO}•\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AO}•\overrightarrow{AC}$
=$\frac{1}{4}{\overrightarrow{AB}}^{2}+\frac{1}{4}{\overrightarrow{AC}}^{2}=\frac{1}{4}×16+\frac{1}{4}×36=13$.
故选:A.

点评 本题考查平面向量的数量积运算,考查了向量在向量方向上投影的概念,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=|{x+\sqrt{a}}|-|{x-\sqrt{1-a}}$|.
(I)当a=1时,解不等式:f(x)≥$\frac{1}{2}$;
(II)若对任意a∈[0,1],不等式f(x)≥b解集不为空集,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c.已知$({a+b+c})({sinA+sinB-sinC})=({2+\sqrt{3}})asinB$.
(1)求角C的大小;
(2)若b=8,c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知m,n表示两条不同的直线,α,β表示两个不同的平面,则下列四个命题中,所有正确命题的序号为②③
①若m⊥n,n?α,则m⊥α;            
②若α∥β,n?α,则n∥β;
③若m⊥α,m∥β,则α⊥β;            
④若m∥α,n?α,则m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知{an}是各项均为正数的等差数列,其前n项和为Sn,且a2•a3=40,S4=26.
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项和为Tn,且b1=1,3bn+1=2(a${\;}_{{b}_{n}}$+1).
①求证:数列{bn}是等比数列;
②求满足Sn>Tn的所有正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,角θ满足$sin\frac{θ}{2}=-\frac{{\sqrt{10}}}{10},cos\frac{θ}{2}=\frac{{3\sqrt{10}}}{10},\overrightarrow{OA}=({12,5})$,设点B是角θ终边上的一个动点,则$|{\overrightarrow{OA}-\overrightarrow{OB}}|$的最小值为$\frac{56}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给一个四棱锥的每个顶点染上一种颜色,并使得同一条棱的两端异色如果有4种颜色可供使用,则共有x种不同的染色方法;如果有5种颜色可供使用,则共有y种不同的染色方法,那么y-x的值为348.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并说明理由;
(3)当x∈(n,a-2)时,函数f(x)的值域为(1,+∞),求实数n,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x2-cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],则满足f(x0)>f($\frac{π}{6}$)的x0的取值范围为[-$\frac{π}{2}$,-$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

同步练习册答案