19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬½Ç¦ÈÂú×ã$sin\frac{¦È}{2}=-\frac{{\sqrt{10}}}{10}£¬cos\frac{¦È}{2}=\frac{{3\sqrt{10}}}{10}£¬\overrightarrow{OA}=£¨{12£¬5}£©$£¬ÉèµãBÊǽǦÈÖÕ±ßÉϵÄÒ»¸ö¶¯µã£¬Ôò$|{\overrightarrow{OA}-\overrightarrow{OB}}|$µÄ×îСֵΪ$\frac{56}{5}$£®

·ÖÎö Çó³ösin¦È£¬cos¦È£¬ÉèOB=a£¬µÃ³öBµã×ø±ê£¬´Ó¶ø¿ÉµÃ|$\overrightarrow{OA}-\overrightarrow{OB}$|¹ØÓÚaµÄ±í´ïʽ£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó³ö×îСֵ£®

½â´ð ½â£º·½·¨1£ºsin¦È=2sin$\frac{¦È}{2}$cos$\frac{¦È}{2}$=-$\frac{3}{5}$£¬cos¦È=cos2$\frac{¦È}{2}$-sin2$\frac{¦È}{2}$=$\frac{4}{5}$£¬
ÉèOB=a£¬ÔòB£¨$\frac{4}{5}$a£¬-$\frac{3}{5}$a£©£¬
¡à$\overrightarrow{OA}-\overrightarrow{OB}$=£¨12-$\frac{4a}{5}$£¬5+$\frac{3a}{5}$£©£¬
¡à|$\overrightarrow{OA}-\overrightarrow{OB}$|=$\sqrt{£¨12-\frac{4a}{5}£©^{2}+£¨5+\frac{3a}{5}£©^{2}}$=$\sqrt{{a}^{2}-\frac{66}{5}a+169}$=$\sqrt{£¨a-\frac{33}{5}£©^{2}+\frac{3136}{25}}$£¬
¡àµ±a=$\frac{33}{5}$ʱ£¬|$\overrightarrow{OA}-\overrightarrow{OB}$|È¡µÃ×îСֵ$\sqrt{\frac{3136}{25}}$=$\frac{56}{5}$£®
·½·¨2£ºÓÉ·½·¨1¿ÉÖªBµãÔÚÉäÏß3x+4y=0£¨x£¾0£©£¬
¡à$|{\overrightarrow{OA}-\overrightarrow{OB}}|$µÄ×îСֵΪAµ½ÉäÏß3x+4y=0£¨x£¾0£©µÄ¾àÀëd=$\frac{36+20}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{56}{5}$£®
¹Ê´ð°¸Îª£º$\frac{56}{5}$£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÄ£³¤¼ÆË㣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®2017ÄêÁ½»á¼ÌÐø¹Ø×¢ÁËÏç´å½ÌʦµÄÎÊÌâ£¬Ëæ×ųÇÏ緢չʧºâ£¬Ïç´å½Ìʦ´ýÓöµÃ²»µ½±£ÕÏ£¬Á÷ʧÏÖÏóÑÏÖØ£¬½Ìʦ¶Ìȱ»áÑÏÖØÓ°ÏìÏç´åº¢×ӵĽÌÓýÎÊÌ⣬Ϊ´Ë£¬Ä³ÊнñÄêҪΪÁ½ËùÏç´åÖÐѧÕÐÆ¸´¢±¸Î´À´ÈýÄêµÄ½Ìʦ£¬ÏÖÔÚÿÕÐÆ¸Ò»Ãû½ÌʦÐèÒª2ÍòÔª£¬ÈôÈýÄêºó½ÌʦÑÏÖØ¶ÌȱʱÔÙÕÐÆ¸£¬ÓÉÓÚ¸÷ÖÖÒòËØ£¬ÔòÿÕÐÆ¸Ò»Ãû½ÌʦÐèÒª5ÍòÔª£¬ÒÑÖªÏÖÔÚ¸ÃÏç´åÖÐѧÎÞ¶àÓà½Ìʦ£¬Îª¾ö²ßÓ¦ÕÐÆ¸¶àÉÙÏç´å½ÌʦËѼ¯²¢ÕûÀíÁ˸ÃÊÐ100ËùÏç´åÖÐѧÔÚ¹ýÈ¥ÈýÄêÄڵĽÌʦÁ÷ʧÊý£¬µÃµ½ÏÂÃæµÄÖù״ͼ£º
ÒÔÕâ100ËùÏç´åÖÐѧÁ÷ʧ½ÌʦÊýµÄƵÂÊ´úÌæ1ËùÏç´åÖÐѧÁ÷ʧ½ÌʦÊý·¢ÉúµÄ¸ÅÂÊ£¬¼ÇX±íʾÁ½ËùÏç´åÖÐѧÔÚ¹ýÈ¥ÈýÄê¹²Á÷ʧµÄ½ÌʦÊý£¬n±íʾ½ñÄêΪÁ½ËùÏç´åÖÐѧÕÐÆ¸µÄ½ÌʦÊý£®Îª±£ÕÏÏç´åº¢×Ó½ÌÓý²¿ÊÜÓ°Ï죬ÈôδÀ´ÈýÄêÄÚ½ÌʦÓжÌȱ£¬ÔòµÚËÄÄêÂíÉÏÕÐÆ¸£®
£¨¢ñ£©ÇóXµÄ·Ö²¼ÁУ»
£¨¢ò£©ÈôÒªÇóP£¨X¡Ün£©¡Ý0.5£¬È·¶¨nµÄ×îСֵ£»
£¨¢ó£©ÒÔδÀ´ËÄÄêÄÚÕÐÆ¸½ÌʦËùÐè·ÑÓÃµÄÆÚÍûֵΪ¾ö²ßÒÀ¾Ý£¬ÔÚn=19Óën=20Ö®ÖÐÑ¡ÆäÒ»£¬Ó¦Ñ¡ÓÃÄĸö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬MΪBB1µÄÖе㣬ÔòÖ±ÏßMCÓëÆ½ÃæACD1Ëù³É½ÇµÄÕýÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{5}$B£®$\frac{{\sqrt{10}}}{5}$C£®$\frac{{\sqrt{15}}}{5}$D£®$\frac{{\sqrt{3}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®ÒÑÖªC=$\frac{2¦Ð}{3}$£¬c=5£¬a=$\sqrt{5}$bsinA£®
£¨1£©ÇóbµÄÖµ£»
£¨2£©Çótan£¨B+$\frac{¦Ð}{4}$£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚ¡÷ABCÖУ¬ÈôAB=4£¬AC=6£¬DΪ±ßBCµÄÖе㣬OΪ¡÷ABCµÄÍâÐÄ£¬Ôò$\overrightarrow{AO}•\overrightarrow{AD}$=£¨¡¡¡¡£©
A£®13B£®24C£®26D£®52

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÊýÁÐ{an}µÄÊ×ÏîΪ1£¬SnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬Sn+1=qSn+1£¬ÆäÖÐq£¾0£¬n¡ÊN*£®
£¨1£©Èô2a2£¬a3£¬a2+2³ÉµÈ²îÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}Âú×ãbn=$\sqrt{1+{a_n}^2}$£¬ÇÒb2=$\frac{5}{3}$£¬Ö¤Ã÷£ºb1+b2+¡­+bn£¾$\frac{{{4^n}-{3^n}}}{{{3^{n-1}}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®º¯Êýf£¨x£©=$\sqrt{x+1}+\frac{1}{x-2}$µÄ¶¨ÒåÓòΪ[-1£¬2£©¡È£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªsin¦Á=$\frac{3}{5}£¬¦Á¡Ê£¨{\frac{¦Ð}{2}£¬¦Ð}£©$£®
£¨1£©Çó$sin£¨{\frac{¦Ð}{3}+¦Á}£©$µÄÖµ£»
£¨2£©Çó$cos£¨{\frac{¦Ð}{4}-2¦Á}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èô$b=3\sqrt{3}£¬B=\frac{¦Ð}{3}£¬sinA=\frac{1}{3}$£¬Ôò±ßaµÄ³¤Îª2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸