精英家教网 > 高中数学 > 题目详情
8.已知sinα=$\frac{3}{5},α∈({\frac{π}{2},π})$.
(1)求$sin({\frac{π}{3}+α})$的值;
(2)求$cos({\frac{π}{4}-2α})$的值.

分析 (1)由已知求出cosα,展开两角和的正弦求$sin({\frac{π}{3}+α})$的值;
(2)由(1)求出sin2α,cos2α的值,再由两角差的余弦得答案.

解答 解:(1)∵α∈($\frac{π}{2},π$),sinα=$\frac{3}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}=-\frac{4}{5}$.
∴$sin({\frac{π}{3}+α})$=sin$\frac{π}{3}$cosα+cos$\frac{π}{3}$sinα
=$\frac{\sqrt{3}}{2}×(-\frac{4}{5})+\frac{1}{2}×\frac{3}{5}=\frac{3-4\sqrt{3}}{10}$;
(2)∵sin2α=2sinαcosα=$-\frac{24}{25}$,
cos2α=cos2α-sin2α=$\frac{7}{25}$,
∴$cos({\frac{π}{4}-2α})$=$cos\frac{π}{4}cos2α+sin\frac{π}{4}sin2α$
=$\frac{\sqrt{2}}{2}×\frac{7}{25}+\frac{\sqrt{2}}{2}×(-\frac{24}{25})=-\frac{17\sqrt{2}}{50}$.

点评 本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.根据如图所示的伪代码,最后输出的结果是60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,角θ满足$sin\frac{θ}{2}=-\frac{{\sqrt{10}}}{10},cos\frac{θ}{2}=\frac{{3\sqrt{10}}}{10},\overrightarrow{OA}=({12,5})$,设点B是角θ终边上的一个动点,则$|{\overrightarrow{OA}-\overrightarrow{OB}}|$的最小值为$\frac{56}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=lgx+$\frac{3}{2}$x-9在区间(n,n+1)(n∈Z)上存在零点,则n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并说明理由;
(3)当x∈(n,a-2)时,函数f(x)的值域为(1,+∞),求实数n,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.现有10件产品,其中6件一等品,4件二等品,从中随机选出3件产品,其中一等品的件数记为随机变量X,则X的数学期望E(X)=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>b>0且c<d,下列不等式中成立的一个是(  )
A.a+c>b+dB.a-c>b-dC.ad<bcD.$\frac{a}{c}$>$\frac{b}{d}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z=i(3-i),其中i是虚数单位,则复数z的实部是1..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个口袋里装有5个不同的红球,7个不同的黑球,若取出一个红球记2分,取出一个黑球记1分,现从口袋中取出6个球,使总分低于8分的取法种数为112(用数字作答).

查看答案和解析>>

同步练习册答案