精英家教网 > 高中数学 > 题目详情
10.下列命题中的真命题是(  )
A.?x0∈R,使得sinx+cosx=$\frac{3}{2}$B.?x0∈R,使得$x_0^2-{x_0}+1=0$
C.?x∈(0,+∞),ex>x+1D.?x∈(0,π),sinx>cosx

分析 利用三角函数的最值判断A的正误;二次方程的根判断B的正误;函数的切线与函数的值的关系判断C的正误;反例判断D的正误.

解答 解:x∈R,sinx+cosx=$\sqrt{2}sin(x+\frac{π}{4})≤\sqrt{2}$,∵$\sqrt{2}<\frac{3}{2}$,∴?x0∈R,使得sinx+cosx=$\frac{3}{2}$,不正确;
x0∈R,$x_0^2-{x_0}+1=0$,对应的函数中因为△=-3<0,所以方程无解.所以B不正确;
?x∈(0,+∞),ex>x+1,因为y=ex,是增函数,x=0时,函数的切线方程为:y=x+1,所以选项C正确;
?x∈(0,π),sinx>cosx,显然x=$\frac{π}{6}$时,不满足不等式,所以选项D不正确;
故选:C.

点评 本题考查命题的真假的判断与应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c(c>0),抛物线y2=2cx的准线交双曲线左支于A,B两点,且∠AOB=120°,其中O为原点,则双曲线的离心率为(  )
A.2B.$1+\sqrt{2}$C.$1+\sqrt{3}$D.$1+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆x2+y2-10x+24=0的圆心是双曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的一个焦点,则此双曲线的渐近线方程为(  )
A.$y=±\frac{4}{3}x$B.$y=±\frac{3}{4}x$C.$y=±\frac{3}{5}x$D.$y=±\frac{4}{5}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程是$\left\{\begin{array}{l}{x=1+\sqrt{3}cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=1.
(Ⅰ)分别写出C1的极坐标方程和C2的直角坐标方程;
(Ⅱ)若射线l的极坐标方程θ=$\frac{π}{3}$(ρ≥0),且l分别交曲线C1、C2于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=sin$\frac{πx}{2}$,g(x)=cos$\frac{πx}{2}$则集合{x|f(x)=g(x)}等于(  )
A.{x|x=4k+$\frac{1}{2}$,k∈Z}B.{x|x=2k+$\frac{1}{2}$,k∈Z}C.{x|x=4k±$\frac{1}{2}$,k∈Z}D.{x|x=2k+1,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$若S3n≤λ•3n-1恒成立,则实数λ的取值范围为[14,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x2-ax-lnx,a∈R.
(Ⅰ)若函数f(x)的图象在x=1处的切线斜率为1,求实数a的值;
(Ⅱ)当a≥-1时,记f(x)的极小值为H,求H的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC中,D在边BC上,且BD=4,DC=2,∠B=60°,∠ADC=150°.
(1)求AC的长;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某工厂生产某种产品的产量x(吨)与相应的生产成本y(万元)有如下几组样本数据:
x3456
y2.53.13.94.5
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得到其回归直线的斜率为0.8,则当该产品的生产成本是6.7万元时,其相应的产量约是(  )
A.8B.8.5C.9D.9.5

查看答案和解析>>

同步练习册答案