【题目】若函数f(x)是定义在R上的偶函数,在(﹣∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x的取值范围是( )
A.(﹣∞,2)
B.(2,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,2)
科目:高中数学 来源: 题型:
【题目】设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )
A.(1,1.25)
B.(1.25,1.5)
C.(1.5,2)
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路l的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(Ⅱ)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若奇函数f(x)在[1,3]上为增函数,且有最小值0,则它在[﹣3,﹣1]上( )
A.是减函数,有最小值0
B.是增函数,有最小值0
C.是减函数,有最大值0
D.是增函数,有最大值0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com