精英家教网 > 高中数学 > 题目详情
2.在锐角△ABC中,$\sqrt{2}a=2bsinA$,则角B=$\frac{π}{4}$.

分析 先利用正弦定理可求得sinB的值,进而求得B.

解答 解:∵$\sqrt{2}a=2bsinA$,
∴$\frac{a}{sinA}=\frac{b}{\frac{\sqrt{2}}{2}}$,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,可得sinB=$\frac{\sqrt{2}}{2}$,
∵B为锐角,
∴B=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题主要考查了正弦定理的应用.解题的关键是利用正弦定理把关于边的问题转化成角的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若α是第二象限角,则$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}$的值等于(  )
A.cos2$\frac{α}{2}$B.sin2$\frac{α}{2}$C.cos2αD.sin2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设定义在R上的函数f(x)=ex-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)若存在x0∈[1,+∞),使得f(x0)<e-a成立,求实数a的取值范围;
(3)定义:如果实数s,t,r满足|s-r|≤|t-r|,那么称s比t更接近r.对于(2)中的a及x≥1,问:$\frac{e}{x}$和ex-1+a哪个更接近lnx?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A、B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5、8、9、9、9,B班5名学生得分为:6、7、8、9、10.
(1)请你判断A、B两个班中哪个班的问卷得分要稳定一些,并说明你的理由;
(2)求如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中(  )
A.有一个内角小于60°B.每一个内角都小于60°
C.有一个内角大于60°D.每一个内角都大于60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}是首项为1,公差为d(d∈N*)的等差数列,若61是该数列中的一项,则公差d不可能是(  )
A.3B.5C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的不等式|x-1|-|x-3|>a2-3a的解集为非空数集,则实数a的取值范围是(  )
A.1<a<2B.$\frac{{3-\sqrt{17}}}{2}<a<\frac{{3+\sqrt{17}}}{2}$C.a<1或a>2D.a≤1或a≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下列数:1,3,2,6,5,15,14,x,y,z,122,…中x,y,z的值依次是42,41,123.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到函数y=$\sqrt{2}$sinx的图象,只需将函数y=$\sqrt{2}$cos(2x-$\frac{π}{4}$)的图象上所有的点(  )
A.横伸长到原来的2倍,再向左平移$\frac{π}{8}$
B.横伸长到原来的2倍,再向右平移$\frac{π}{4}$个
C.横缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$
D.横缩短到原来的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$

查看答案和解析>>

同步练习册答案