精英家教网 > 高中数学 > 题目详情
16.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),且cos(α-β)=0,那么|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.2B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.3

分析 可求出向量$\overrightarrow{a}+\overrightarrow{b}$的坐标,从而求出$(\overrightarrow{a}+\overrightarrow{b})^{2}=(cosα+cosβ)^{2}+(sinα+sinβ)^{2}$,这样根据cos(α-β)=0化简便可求出$(\overrightarrow{a}+\overrightarrow{b})^{2}$的值,从而便可得出$|\overrightarrow{a}+\overrightarrow{b}|$的值.

解答 解:$\overrightarrow{a}+\overrightarrow{b}=(cosα+cosβ,sinα+sinβ)$,且cos(α-β)=0;
∴$(\overrightarrow{a}+\overrightarrow{b})^{2}=(cosα+cosβ)^{2}+(sinα+sinβ)^{2}$
=cos2α+2cosαcosβ+cos2β+sin2α+2sinαsinβ+sin2β
=2+2(cosαcosβ+sinαsinβ)
=2+2cos(α-β)
=2+0
=2;
∴$|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{2}$.
故选C.

点评 考查向量坐标的加法运算,以及向量数量积的计算公式及其坐标运算,两角差的余弦公式,以及要求$|\overrightarrow{a}+\overrightarrow{b}|$而求$(\overrightarrow{a}+\overrightarrow{b})^{2}$的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若ax≥xa对?x∈(0,+∞)恒成立,则正数a的取值集合为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={1,2,3,4},B={2,4,6},则A∩B=(  )
A.{1,3}B.{2,4}C.{3,6}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面上三个向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$的模均为1,它们相互之间的夹角均为120°.
(1)求($\overrightarrow a$-$\overrightarrow b$)•$\overrightarrow c$的值;
(2)若|k$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c}$|>1(k∈R),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,$\frac{π}{3}$<α<π,则求sin($\frac{π}{12}$-α)=(  )
A.-$\frac{4+\sqrt{2}}{8}$B.-$\frac{4-\sqrt{2}}{8}$C.-$\frac{4-\sqrt{2}}{6}$D.-$\frac{4+\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=a-$\frac{1}{|x|}$,a∈R.
(1)若函数f(x)的定义域和值域均为[$\frac{1}{2}$,2],求实数a的值.
(2)设m<n<0,试问是否存在实数a,使函数f(x)的定义域与值域均为[m,n]?若存在,请求出a的取值范围,并指出m,n所满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设y=f(x)是R上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,写出函数f(x)在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若a,a+2,3a+3成等比数列,则实数a的为$\frac{1±\sqrt{33}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知一次函数f(x)满足f(x+1)+f(x)=2x+3对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)若g(x)是定义在区间[-1,1]上的偶函数,当x∈[0,1]时,g(x)=f(x),求g(x)的
解析式.

查看答案和解析>>

同步练习册答案