分析 (1)设f(x)=kx+b(k≠0),由f(x+1)+f(x)=2x+3,即可得到$\left\{\begin{array}{l}{2k=2}\\{k+2b=3}\end{array}\right.$,解得即可.
(2)设x<0,利用函数是偶函数,得到-x>0,然后代入求解即可.
解答 解(1):设f(x)=kx+b(k≠0),由f(x+1)+f(x)=2x+3,得k(x+1)+1+kx+b=2x+3
∴$\left\{\begin{array}{l}{2k=2}\\{k+2b=3}\end{array}\right.$,
解得k=1,b=1,
∴f(x)=x+1,x∈R,
(2)设x∈[-1,0),则-x∈(0,1],
∵x∈[0,1]时,g(x)=f(x)=x+1,
∴g(-x)=-x+1,又因为g(x)为偶函数
∴g(-x)=g(x)=-x+1
∴$g(x)=\left\{{\begin{array}{l}{x+1,0≤x≤1}\\{-x+1,-1≤x<0}\end{array}}\right.$.
点评 本题考查解析式的求解,考查学生分析问题解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?n∉N,f(n)>n | B. | ?n0∈N,f(n0)>n0 | C. | ?n0∈N,f(n0)≤n0 | D. | ?n∈N,f(n)>n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com