精英家教网 > 高中数学 > 题目详情
6.设命题P:?n∈N,f(n)≤n,则¬p是(  )
A.?n∉N,f(n)>nB.?n0∈N,f(n0)>n0C.?n0∈N,f(n0)≤n0D.?n∈N,f(n)>n

分析 直接利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题P:?n∈N,f(n)≤n,则¬p是?n0∈N,f(n0)>n0
故选:B.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知一次函数f(x)满足f(x+1)+f(x)=2x+3对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)若g(x)是定义在区间[-1,1]上的偶函数,当x∈[0,1]时,g(x)=f(x),求g(x)的
解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.椭圆2x2+4y2=1的长轴长等于(  )
A.4B.2$\sqrt{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,(2$\overrightarrow a$-3$\overrightarrow b$)•(2$\overrightarrow a$+$\overrightarrow b$)=13.
(1)求$|{\overrightarrow a-\overrightarrow b}$|;
(2)求向量$\overrightarrow a$在$\overrightarrow a-\overrightarrow b$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\overrightarrow{OA}$=(2,8),$\overrightarrow{OB}$=(-7,2),则$\overrightarrow{AB}$=(-9,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥A-BCD中,AB=AC=AD=BC=CD=4,BD=4$\sqrt{2}$,E,F分别为AC,CD的中点,G为线段BD上一点,且BE∥平面AGF.
(Ⅰ)求BG的长;
(Ⅱ)当直线BE∥平面AGF时,求四棱锥A-BCFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)写出函数f(x)的解析式及x0的值;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若cos(75°+α)=$\frac{1}{3}$,则cos(30°-2α)的值为(  )
A.$\frac{4\sqrt{2}}{9}$B.-$\frac{4\sqrt{2}}{9}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点(-4,3)是角α终边上的一点,则sin(π-α)=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案