分析 (Ⅰ)连DE交AF于M,得到M为△ACD的重心,证明BE∥GM,然后求解BG的长.
(Ⅱ)取BD的中点为O,连AO,CO证明AO⊥平面BCD,然后求解几何体的体积.
解答
解:(Ⅰ)连DE交AF于M,则M为△ACD的重心,且$\frac{DM}{ME}=\frac{2}{1}$
∵BE∥平面AGF,∴BE∥GM,$\frac{DG}{BG}=\frac{2}{1}$
∴$BG=\frac{{4\sqrt{2}}}{3}$…(6分)
(Ⅱ)取BD的中点为O,连AO,CO,则$AO=CO=2\sqrt{2}$,∴AO⊥OC,AO⊥BD,从而AO⊥平面BCD
∴$V_{A-BCD}^{\;}=\frac{1}{3}×\frac{1}{2}×4×4×2\sqrt{2}=\frac{{16\sqrt{2}}}{3}$,
∴${V_{A-FDG}}=\frac{1}{3}{V_{A-BCD}}$,
从而${V_{A-BCFG}}=\frac{2}{3}{V_{A-BCD}}$=$\frac{{32\sqrt{2}}}{9}$.…(12分)
点评 本题考查几何体的体积的求法,空间点线面的距离,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?n∉N,f(n)>n | B. | ?n0∈N,f(n0)>n0 | C. | ?n0∈N,f(n0)≤n0 | D. | ?n∈N,f(n)>n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 1+$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com