精英家教网 > 高中数学 > 题目详情
11.如图,在三棱锥A-BCD中,AB=AC=AD=BC=CD=4,BD=4$\sqrt{2}$,E,F分别为AC,CD的中点,G为线段BD上一点,且BE∥平面AGF.
(Ⅰ)求BG的长;
(Ⅱ)当直线BE∥平面AGF时,求四棱锥A-BCFG的体积.

分析 (Ⅰ)连DE交AF于M,得到M为△ACD的重心,证明BE∥GM,然后求解BG的长.
(Ⅱ)取BD的中点为O,连AO,CO证明AO⊥平面BCD,然后求解几何体的体积.

解答 解:(Ⅰ)连DE交AF于M,则M为△ACD的重心,且$\frac{DM}{ME}=\frac{2}{1}$
∵BE∥平面AGF,∴BE∥GM,$\frac{DG}{BG}=\frac{2}{1}$
∴$BG=\frac{{4\sqrt{2}}}{3}$…(6分)
(Ⅱ)取BD的中点为O,连AO,CO,则$AO=CO=2\sqrt{2}$,∴AO⊥OC,AO⊥BD,从而AO⊥平面BCD
∴$V_{A-BCD}^{\;}=\frac{1}{3}×\frac{1}{2}×4×4×2\sqrt{2}=\frac{{16\sqrt{2}}}{3}$,
∴${V_{A-FDG}}=\frac{1}{3}{V_{A-BCD}}$,
从而${V_{A-BCFG}}=\frac{2}{3}{V_{A-BCD}}$=$\frac{{32\sqrt{2}}}{9}$.…(12分)

点评 本题考查几何体的体积的求法,空间点线面的距离,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在Rt△ABC中,∠A=90°,AB=AC=2,点D为AC中点,点E满足$\overrightarrow{BE}=\frac{1}{3}\overrightarrow{BC}$,则$\overrightarrow{AE}•\overrightarrow{BD}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设ξ为随机变量,从侧面均是等边三角形的正四棱锥的8条棱中任选两条,ξ为这两条棱所成的角.
(1)求概率$P(ξ=\frac{π}{2})$;
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某单位利用周末时间组织员工进行一次“健康之路,携手共筑”徒步走健身活动,有n人参加,现将所有参加人员按年龄情况分为[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六组,其频率分布直方图如图所示.已知[35,40)之间的参加者有8人.
(1)求n的值并补全频率分布直方图;
(2)已知[30,40)岁年龄段中采用分层抽样的方法抽取5人作为活动的组织者,其中选取3人作为领队,记选取的3名领队中年龄在[30,35)岁的人数为ξ,求ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设命题P:?n∈N,f(n)≤n,则¬p是(  )
A.?n∉N,f(n)>nB.?n0∈N,f(n0)>n0C.?n0∈N,f(n0)≤n0D.?n∈N,f(n)>n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一个圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星,如图所示.设正八角星的中心为O,并且 $\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{2}}$,若将点O到正八角星16个顶点的向量,都写成为λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$,λ,μ∈R的形式,则λ+μ的最大值为(  )
A.$\sqrt{2}$B.2C.1+$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα=$\frac{1}{3}$,α是第二象限角,则tan(π-α)=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.国家旅游局确定2016年以“丝绸之路旅游年”为年度旅游宣传主题,甘肃武威为配合国家旅游局,在每张门票后印有不同的“丝绸之路徽章”.某人利用五一假期,在该地游览了文庙,白塔寺,沙漠公园,森林公园,天梯山石窟五处景点,并收集文庙纪念徽章3枚,白塔纪念徽章2枚,其余三处各1枚.,现从中任取4枚.
(Ⅰ)求抽取的4枚中恰有3个景点的概率;
(Ⅱ)抽取的4枚徽章中恰有文庙纪念徽章的个数为ξ枚,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②在线性回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好;
③对分类变量X与Y的随机变量k2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大;
④数据1,2,3,4的标准差是数据2,4,6,8的标准差的一半.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案