精英家教网 > 高中数学 > 题目详情
19.某单位利用周末时间组织员工进行一次“健康之路,携手共筑”徒步走健身活动,有n人参加,现将所有参加人员按年龄情况分为[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六组,其频率分布直方图如图所示.已知[35,40)之间的参加者有8人.
(1)求n的值并补全频率分布直方图;
(2)已知[30,40)岁年龄段中采用分层抽样的方法抽取5人作为活动的组织者,其中选取3人作为领队,记选取的3名领队中年龄在[30,35)岁的人数为ξ,求ξ的分布列和数学期望E(ξ).

分析 (1)先求出年龄在[35,40)之间的频率,由此能求出n,从而能求出第二组的频率,进而能求出第二组的矩形高,由此能补全频率分布直方图.
(2)由(1)知,[30,35)之间的人数为12,又[35,40)之间的人数为8,采用分层抽样抽取5人,其中[30,35)岁中有3人,[35,40)岁中有2人,由题意,随机变量ξ的甩有可能取值为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)年龄在[35,40)之间的频率为0.04×5=0.2,
∵$\frac{8}{n}$=0.2,∴n=$\frac{8}{0.2}$=40,
∵第二组的频率为:
1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,
∴第二组的矩形高为:$\frac{0.3}{5}$=0.06,
∴频率分布直方图如右图所示.
(2)由(1)知,[30,35)之间的人数为0.06×5×40=12,
又[35,40)之间的人数为8,
∵[30,35)岁年龄段人数与[35,40)岁年龄段人数的比值为12:8=3:2,
∴采用分层抽样抽取5人,其中[30,35)岁中有3人,[35,40)岁中有2人,
由题意,随机变量ξ的甩有可能取值为1,2,3,
P(ξ=1)=$\frac{{C}_{3}^{1}{C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,
P(ξ=2)=$\frac{{C}_{3}^{2}{C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$,
P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
∴ξ的分布列为:

 ξ 1 2 3
 P $\frac{3}{10}$ $\frac{3}{5}$ $\frac{1}{10}$
Eξ=$1×\frac{3}{10}+2×\frac{3}{5}+3×\frac{1}{10}$=$\frac{9}{5}$.

点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,若CB=CD=CF=a.
(Ⅰ)求证:平面BDE⊥平面AED;
(Ⅱ)求三棱锥A-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.随着2022年北京冬奥会的成功申办,冰雪项目已经成为北京市民冬季休闲娱乐的重要方式.为普及冰雪运动,寒假期间学校组织高一年级学生参加冬令营.其中一班有3名男生和1名女生参加,二班有2名男生和2名女生参加.活动结束时,要从参加冬令营的学生中选出部分学生进行展示.
(Ⅰ)若要从参加冬令营的这8名学生中任选4名,求选出的4名学生中有女生的概率;
(Ⅱ)若要从一班和二班参加冬令营的学生中各任选2名,设随机变量X表示选出的女生人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x,y满足约束条件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-1≥0\\ y≤1\end{array}\right.$,则目标函数z=2x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,(2$\overrightarrow a$-3$\overrightarrow b$)•(2$\overrightarrow a$+$\overrightarrow b$)=13.
(1)求$|{\overrightarrow a-\overrightarrow b}$|;
(2)求向量$\overrightarrow a$在$\overrightarrow a-\overrightarrow b$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内,复数$\frac{3-i}{1-i}$对应的点的坐标为(  )
A.(2,1)B.(1,-2)C.(1,2)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥A-BCD中,AB=AC=AD=BC=CD=4,BD=4$\sqrt{2}$,E,F分别为AC,CD的中点,G为线段BD上一点,且BE∥平面AGF.
(Ⅰ)求BG的长;
(Ⅱ)当直线BE∥平面AGF时,求四棱锥A-BCFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,对任意x∈R,若不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥1恒成立,则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是$[{-2\sqrt{3},2\sqrt{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+alnx
(1)当a=-8时,求函数的单调区间;
(2)若函数g(x)=f(x)+$\frac{2}{x}$在[2,+∞)上是单调递增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案