精英家教网 > 高中数学 > 题目详情
4.在复平面内,复数$\frac{3-i}{1-i}$对应的点的坐标为(  )
A.(2,1)B.(1,-2)C.(1,2)D.(2,-1)

分析 利用复数代数形式的乘除运算分钟化简复数为:a+bi的形式,即可得答案.

解答 解:∵复数$\frac{3-i}{1-i}$=$\frac{(3-i)(1+i)}{(1-i)(1+i)}$=$\frac{4+2i}{2}$=2+i.
∴复数$\frac{3-i}{1-i}$在复平面内对应的点的坐标为(2,1).
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知复数$z=\frac{10}{3+i}-2i$,其中i是虚数单位,则|z|=(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若等差数列{4n+1}与等比数列{3n}的公共项按照原来的顺序排成数列为{an},则a8=98

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设向量$\overrightarrow a$=(-2,3),$\overrightarrow b$=(-1,x-1),若$\overrightarrow a$∥$\overrightarrow b$,则x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某单位利用周末时间组织员工进行一次“健康之路,携手共筑”徒步走健身活动,有n人参加,现将所有参加人员按年龄情况分为[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六组,其频率分布直方图如图所示.已知[35,40)之间的参加者有8人.
(1)求n的值并补全频率分布直方图;
(2)已知[30,40)岁年龄段中采用分层抽样的方法抽取5人作为活动的组织者,其中选取3人作为领队,记选取的3名领队中年龄在[30,35)岁的人数为ξ,求ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,BC∥AD,PA⊥AD,平面PAB⊥平面ABCD,∠BAD=120°,且PA=AB=BC=$\frac{1}{2}$AD=2.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一个圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星,如图所示.设正八角星的中心为O,并且 $\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{2}}$,若将点O到正八角星16个顶点的向量,都写成为λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$,λ,μ∈R的形式,则λ+μ的最大值为(  )
A.$\sqrt{2}$B.2C.1+$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a、b是两个正数,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则a+b的值等于(  )
A.3B.4C.5D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|1<x+2<5},B={x|-1<x<1},则(  )
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

同步练习册答案