精英家教网 > 高中数学 > 题目详情
13.若a、b是两个正数,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则a+b的值等于(  )
A.3B.4C.5D.20

分析 由a,b>0,可得a,-2,b成等比数列,即有ab=4;讨论a,b,-2成等差数列或b,a,-2成等差数列,运用中项的性质,解方程可得a,b,即可得到得到所求和.

解答 解:由a,b>0,可得a,-2,b成等比数列,
即有ab=4,①
若a,b,-2成等差数列,可得
a-2=2b,②
由①②可得a=4,b=1,a+b=5;
若b,a,-2成等差数列,可得
b-2=2a,③
由①③可得,b=4,a=1,a+b=5.
综上可得a+b=5.
故选:C.

点评 本题考查等差数列和等比数列的中项的性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,左顶点(-4,0),过点A作斜率为k(k≠0)的直线l交椭圆C于D,交y轴于E.
(1)求椭圆的方程;
(2)已知点P为AD的中点,是否存在定点Q,对于任意的k(k≠0),都有OP⊥EQ?若存在,求出点Q的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内,复数$\frac{3-i}{1-i}$对应的点的坐标为(  )
A.(2,1)B.(1,-2)C.(1,2)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知M(-2$\sqrt{2}$,0),N(2$\sqrt{2}$,0)为椭圆的左、右顶点,P是椭圆上异于M,N的动点,且△PMN的面积最大值为4$\sqrt{2}$.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)四边形ABCD的顶点都在椭圆上,且对角线AC,BD过原点,kAC•kBD=-$\frac{b^2}{a^2}$,求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,对任意x∈R,若不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥1恒成立,则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是$[{-2\sqrt{3},2\sqrt{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等差数列{an}中的两项a2、a2016恰好是关于x的函数f(x)=2x2+8x+a(a∈R)的两个零点,且a1009+a1010>0,则使{an}的前n项和Sn取得最小值的n为(  )
A.1009B.1010C.1009,1010D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设变量x,y满足约束条件$\left\{{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-1≤0}\end{array}}$,且目标函数z=$\frac{x}{a}$+$\frac{y}{b}$(a,b为正数)的最大值为1,则a+b的最小值为(  )
A.$\sqrt{2}$B.4C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设Sn是等比数列{an}的前n项和,若S2=2,S6=4,则S4=(  )
A.1+$\sqrt{5}$B.$\frac{10}{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设角α的终边过点P(-4t,3t)(t∈R,且t>0),则2sinα+cosα=$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案