精英家教网 > 高中数学 > 题目详情
1.已知M(-2$\sqrt{2}$,0),N(2$\sqrt{2}$,0)为椭圆的左、右顶点,P是椭圆上异于M,N的动点,且△PMN的面积最大值为4$\sqrt{2}$.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)四边形ABCD的顶点都在椭圆上,且对角线AC,BD过原点,kAC•kBD=-$\frac{b^2}{a^2}$,求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围.

分析 (Ⅰ)由M(-2$\sqrt{2}$,0),N(2$\sqrt{2}$,0)为椭圆的左、右顶点,P是椭圆上异于M,N的动点,且△PMN的面积最大值为4$\sqrt{2}$,求出a,b,由此能求出椭圆方程及离心率.
(Ⅱ)设lAB:y=kx+m,A(x1,y1),B(x2,y2)联立$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=8}\end{array}}\right.$,得(1+2k2)x2+4kmx+2m2-8=0,由此利用韦达定理、向量的数量积、椭圆性质,结合已知条件能求出$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围.

解答 解:(Ⅰ)∵M(-2$\sqrt{2}$,0),N(2$\sqrt{2}$,0)为椭圆的左、右顶点,P是椭圆上异于M,N的动点,且△PMN的面积最大值为4$\sqrt{2}$.
∴由题意知,$a=2\sqrt{2}$,又因为△PMN的面积最大值为$4\sqrt{2}$.
∴$\frac{1}{2}2ab=4\sqrt{2}$,
解得b=2,
∴椭圆方程为$\frac{x^2}{8}+\frac{y^2}{4}=1$,离心率$e=\frac{{\sqrt{2}}}{2}$…(5分)
(Ⅱ)设lAB:y=kx+m,A(x1,y1),B(x2,y2
联立$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=8}\end{array}}\right.$,消去y并整理,得(1+2k2)x2+4kmx+2m2-8=0
∴${x_1}+{x_2}=\frac{-4km}{{1+2{k^2}}},{x_1}•{x_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}$,…(7分)
∴${y_1}•{y_2}=(k{x_1}+m)(k{x_2}+m)=\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}$…(8分)
∵${k_{OA}}•{K_{OB}}=-\frac{b^2}{a^2}$,∴$\frac{y_1}{x_1}•\frac{y_2}{x_2}=-\frac{1}{2}$,
∴$\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}=-\frac{1}{2}•\frac{{2{m^2}-8}}{{1+2{k^2}}}$,解得m2=4k2+2,
∴$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=\frac{{2{m^2}-8}}{{1+2{k^2}}}+\frac{{{m^2}-8{k^2}}}{{1+2{k^2}}}=2-\frac{4}{{1+2{k^2}}}$,
∴$-2≤\overrightarrow{OA}•\overrightarrow{OB}<2$…(10分)
.当k=0时,$\overrightarrow{OA}•\overrightarrow{OB}$取最小值-2,
当k不存在,即AB⊥x轴时,$\overrightarrow{OA}•\overrightarrow{OB}$取最大值2,
∴$-2≤\overrightarrow{OA}•\overrightarrow{OB}≤2$.…(12分)

点评 本题考查椭圆方程及离心率的求法,考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意韦达定理、向量的数量积、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).
在某次数学活动中,每位参加者需从所有的“三位递增数”中随机抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的“三位递增数”,并求其发生的概率;
(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设向量$\overrightarrow a$=(-2,3),$\overrightarrow b$=(-1,x-1),若$\overrightarrow a$∥$\overrightarrow b$,则x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,BC∥AD,PA⊥AD,平面PAB⊥平面ABCD,∠BAD=120°,且PA=AB=BC=$\frac{1}{2}$AD=2.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一个圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星,如图所示.设正八角星的中心为O,并且 $\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{2}}$,若将点O到正八角星16个顶点的向量,都写成为λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$,λ,μ∈R的形式,则λ+μ的最大值为(  )
A.$\sqrt{2}$B.2C.1+$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.春节期间,小明得到了10个红包,每个红包内的金额互不相同,且都不超过200元.已知红包内金额在(0,50]的有3个,在(50,100]的有4个,在(100,200]的有3个.
(I)若小明为了感谢父母,特地随机拿出两个红包,给父母各一个,求父母二人所得红包金额分别在(50,100]和(100,200]的概率;
(Ⅱ)若小明要随机拿出3个红包的总金额给爷爷、奶奶和外公、外婆买礼物,设他所拿出的三个红包金额在(50,100]的有X个,求X的分布列及其期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a、b是两个正数,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则a+b的值等于(  )
A.3B.4C.5D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数(1+ai)2-2i(i为虚数单位)是纯虚数,则实数a=(  )
A.0B.±1C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α是第一象限角,sinα-cosα=$\frac{{\sqrt{5}}}{5}$,则cos2α=(  )
A.$-\frac{3}{5}$B.$±\frac{3}{5}$C.$\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

同步练习册答案