分析 (1)由椭圆的离心率e=$\frac{1}{2}$,左顶点(-4,0),求出a,b,由此能求出椭圆方程.
(2)直线的方程为y=k(x+4),与椭圆联立,得(x+4)[(4k2+3)x+16k2-12]=0,由此利用韦达定理、中点坐标公式、直线方程、直线垂直、椭圆性质,结合已知条件能求出定点Q的坐标.
解答 解:(1)∵左顶点为A(-4,0),∴a=4,
又∵e=$\frac{c}{a}=\frac{1}{2}$,∴c=2,
又∵b2=a2-c2=16-4=12,…(2分)
∴椭圆方程为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.…(3分)
(2)直线的方程为y=k(x+4),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\\{y=k(x+4)}\end{array}\right.$,消元得$\frac{{x}^{2}}{16}+\frac{[k(x+4)]^{2}}{12}=1$,
化简得(x+4)[(4k2+3)x+16k2-12]=0,
∴${x}_{1}=-4,{x}_{2}=\frac{-16{k}^{2}+12}{4{k}^{2}+3}$,…(6分)
∴D($\frac{-16{k}^{2}+12}{4{k}^{2}+3}$,$\frac{24k}{4{k}^{2}+3}$),又∵点P为AD的中点,∴P($\frac{-16{k}^{2}}{4{{k}^{2}+3}_{\;}}$,$\frac{12k}{4{k}^{2}+3}$),
则kOP=-$\frac{3}{4k}$(k≠0),…(9分)
直线l的方程为y=k(x+4),令x=0,得E(0,4k),
假设存在定点Q(m,n)(m≠0)使得OP⊥EQ,则kOP•kEQ=-1,
即-$\frac{3}{4k}•\frac{n-4k}{m}=-1$,
∴(4m+12)k-3n=0恒成立
∴$\left\{\begin{array}{l}{4m+12=0}\\{-3n=0}\end{array}\right.$,即$\left\{\begin{array}{l}{m=-3}\\{n=0}\end{array}\right.$,
因此定点Q的坐标为(-3,0)…(12分)
点评 本题考查椭圆方程的求法,考查满足直线与直线垂直的定点是否存在的判断与求法,是中档题,解题时要认真审题,注意韦达定理、中点坐标公式、直线方程、直线垂直、椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com