精英家教网 > 高中数学 > 题目详情
10.已知函数f′(x)的图象如图所示,其中f′(x)是f(x)的导函数,则f(x)的极值点的个数为(  )
A.2B.3C.4D.5

分析 根据极值点的定义和f′(x)的图象得出结论.

解答 解:若x0是f(x)的极值点,则f′(x0)=0,且f′(x)在x0两侧异号,
由f′(x)的图象可知f′(x)=0共有4解,
其中只有两个零点的左右两侧导数值异号,
故f(x)有2个极值点.
故选A.

点评 本题考查了极值点的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设复数z满足zi=1-2i,则z的虚部等于(  )
A.-2iB.-iC.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四边形ABCD中,∠BAD=90°,AD∥BC,PE⊥平面ABCD,E在AD上,FD∥PE,BC=AE=PE,DE=DF=$\frac{1}{2}$BC.
(Ⅰ)求证:AB⊥EF;
(Ⅱ)求证:CF∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,$f(x)={(\frac{1}{2})^x}-1$,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围为(  )
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知变量x,y满足条件$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+2y-9≤0\end{array}\right.$则x+3y的最大值是(  )
A.4B.8C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{1}{2}$mcos2x+(m-2)sinx,其中1≤m≤2,若函数f(x)的最大值记为g(m),则g(m)的最小值为(  )
A.-$\frac{1}{4}$B.1C.3-$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知菱形ABCD如图(1)所示,其中∠ACD=60°,AB=2,AC与BD相交于点O,现沿AC进行翻折,使得平面ACD⊥平面ABC,取点E,连接AE,BE,CE,DE,使得线段BE再平面ABC内的投影落在线段OB上,得到的图形如图(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)证明:DE⊥AC;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知不等式$\frac{|x+3|-1}{2}$>x的解集为(-∞,m).
(Ⅰ)求实数m的值;
(Ⅱ)若关于x的方程|x-n|+|x+$\frac{1}{n}$|=m(n>0)有解,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)当a=2时,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[e,+∞)上的最小值.

查看答案和解析>>

同步练习册答案