| A. | 4 | B. | 8 | C. | 12 | D. | 13 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+2y-9≤0\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=1}\\{x+2y-9=0}\end{array}\right.$,解得A(1,4),
令z=x+3y,化为y=-$\frac{x}{3}+\frac{z}{3}$.
由图可知,当直线y=-$\frac{x}{3}+\frac{z}{3}$经过A时,直线y=-$\frac{x}{3}+\frac{z}{3}$在y轴上的截距最大,z有最大值为13.
故选:D.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若m∥n,m∥α,则n∥α | B. | 若m、n?α,m∥β,n∥β,则α∥β | ||
| C. | 若m⊥α,n∥α,则m⊥n | D. | 若m⊥α,α⊥β,m∥n,则n∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 42 | C. | 44 | D. | 52 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{3}$,+∞) | B. | (0,$\sqrt{3}$] | C. | ($\frac{1}{2}$,$\sqrt{3}$] | D. | (0,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com