精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=ln(1+2x),则f'(x)=$\frac{2}{1+2x}$.

分析 根据复合函数的导数公式进行求解即可.

解答 解:函数的导数f′(x)=$\frac{1}{1+2x}•2$=$\frac{2}{1+2x}$,
故答案为:$\frac{2}{1+2x}$.

点评 本题主要考查函数的导数的计算,根据复合函数的导数公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,网络纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则在该几何体中,最长的棱的长度是(  )
A.4B.2$\sqrt{5}$C.4$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知l、m表示直线,α、β、γ表示平面,下列条件中能推出结论正确的选项是(  )
条件:①l?α,α∥β;②α∥β,β∥γ;③l⊥α,α∥β;④l⊥m,l⊥α,m⊥β.
结论:a:l⊥β;b:α⊥β;c:l∥β;d:α∥γ.
A.①⇒c、②⇒d、③⇒a、④⇒bB.①⇒a、②⇒d、③⇒c、④⇒bC.①⇒b、②⇒d、③⇒a、④⇒cD.①⇒c、②⇒b、③⇒a、④⇒d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{-x+1,}&{x<1}\\{{2}^{x}-2,}&{x≥1}\end{array}\right.$,g(x)=$\frac{1}{x}$,若对任意x∈[m,+∞)(m>0),总存在两个x0∈[0,2],使得f(x0)=g(x),则实数m的取值范围是(  )
A.[1,+∞)B.(0,1]C.[$\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,a8=2,则a1=$\frac{1}{2}$;若数列{an}的前n项和是Sn,则S2017=$\frac{2017}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设复数z满足zi=1-2i,则z的虚部等于(  )
A.-2iB.-iC.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-(x+1)ln(x+1),g(x)=x-a(x2+2x)(a∈R)
(Ⅰ)求f(x)的最大值;
(Ⅱ)若当x≥0时,不等式f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.抛物线M:y2=ax的焦点F(1,0),过点K(-1,0)的直线l与M相交于A、B两点.
(Ⅰ)求kAF+kBF的值;
(Ⅱ)求直线l的斜率k的取值范围,使点F落在以AB为直径的圆外.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知变量x,y满足条件$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+2y-9≤0\end{array}\right.$则x+3y的最大值是(  )
A.4B.8C.12D.13

查看答案和解析>>

同步练习册答案