精英家教网 > 高中数学 > 题目详情
15.△ABC的三个内角A、B、C,所对的边分别是a、b、c,若c=2$\sqrt{3}$,tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,则△ABC的面积的取值范围是(  )
A.[$\sqrt{3}$,+∞)B.(0,$\sqrt{3}$]C.($\frac{1}{2}$,$\sqrt{3}$]D.(0,$\frac{\sqrt{3}}{2}$]

分析 由已知条件求得C,再由余弦定理可得ab的范围,代入三角形面积公式得答案.

解答 解:由tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,得tanA+tanB=$\sqrt{3}$(1-tanAtanB),
∴tan(A+B)=$\sqrt{3}$,即tanC=-$\sqrt{3}$.
∵0<C<π,∴C=$\frac{2π}{3}$.
则sinC=$\frac{\sqrt{3}}{2}$.
又c=2$\sqrt{3}$,由余弦定理可得:$(2\sqrt{3})^{2}={a}^{2}+{b}^{2}-2ab•cos\frac{2π}{3}$,
即a2+b2+ab=12,
∴12=a2+b2+ab≥3ab,得ab≤4.
则${S}_{△ABC}=\frac{1}{2}ab•sinC≤\frac{1}{2}×4×\frac{\sqrt{3}}{2}=\sqrt{3}$.
∴△ABC的面积的取值范围是(0,$\sqrt{3}$].
故选:B.

点评 本题考查两角和的正切,考查正弦定理在求解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知变量x,y满足条件$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+2y-9≤0\end{array}\right.$则x+3y的最大值是(  )
A.4B.8C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等差数列{an}中,已知a3=3,a5=-3,则a7=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x∈R|x>0},B={x∈R|x2≤1},则A∩B=(  )
A.(0,1)B.(0,1]C.[-1,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x|x2-9<0},B={-3,-1,0,2,3},则A∩B中元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)当a=2时,求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[e,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,则复数(-2i-1)•i的共轭复数为(  )
A.-2-iB.2-iC.-2+iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x=-3,x=1是函数f(x)=sin(ωx+φ)(ω>0)的两个相邻的极值点,且f(x)在x=-1处的导数f'(-1)>0,则f(0)=(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的面积是10,内角A,B,C所对边长分别为a,b,c,$cosA=\frac{12}{13}$,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.144B.48C.24D.13

查看答案和解析>>

同步练习册答案