精英家教网 > 高中数学 > 题目详情
14.($\root{6}{x}$+$\frac{1}{2\sqrt{x}}$)8的展开式中的常数项等于7.(用数字填写答案)

分析 在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.

解答 解:($\root{6}{x}$+$\frac{1}{2\sqrt{x}}$)8的展开式中的通项共公式为Tr+1=${C}_{8}^{r}$•${(\frac{1}{2})}^{r}$•${x}^{\frac{4-2r}{3}}$,令$\frac{4-2r}{3}$=0,求得 r=2,
可得展开式的常数项为${C}_{8}^{2}$•${(\frac{1}{2})}^{2}$=7,
故答案为:7.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.抛物线M:y2=ax的焦点F(1,0),过点K(-1,0)的直线l与M相交于A、B两点.
(Ⅰ)求kAF+kBF的值;
(Ⅱ)求直线l的斜率k的取值范围,使点F落在以AB为直径的圆外.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知变量x,y满足条件$\left\{\begin{array}{l}x≥1\\ x-y≤0\\ x+2y-9≤0\end{array}\right.$则x+3y的最大值是(  )
A.4B.8C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知菱形ABCD如图(1)所示,其中∠ACD=60°,AB=2,AC与BD相交于点O,现沿AC进行翻折,使得平面ACD⊥平面ABC,取点E,连接AE,BE,CE,DE,使得线段BE再平面ABC内的投影落在线段OB上,得到的图形如图(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)证明:DE⊥AC;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足an+1=$\frac{a_n^2+9}{{2{a_n}}},{a_{n+1}}<{a_n}$.
(I)求a1的取值范围;
(II)是否存在m∈N*,使得(am-3)(am+2-3)=(am+1-3)2?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知不等式$\frac{|x+3|-1}{2}$>x的解集为(-∞,m).
(Ⅰ)求实数m的值;
(Ⅱ)若关于x的方程|x-n|+|x+$\frac{1}{n}$|=m(n>0)有解,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等差数列{an}中,已知a3=3,a5=-3,则a7=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x∈R|x>0},B={x∈R|x2≤1},则A∩B=(  )
A.(0,1)B.(0,1]C.[-1,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x=-3,x=1是函数f(x)=sin(ωx+φ)(ω>0)的两个相邻的极值点,且f(x)在x=-1处的导数f'(-1)>0,则f(0)=(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案