精英家教网 > 高中数学 > 题目详情

【题目】已知命题:函数在定义域上单调递增;命题:在区间上恒成立.

1)如果命题为真命题,求实数的值或取值范围;

2)命题“”为真命题,”为假命题,求实数的取值范围.

【答案】12

【解析】

1)先由命题为真命题,得上恒成立,根据一元二次不等式恒成立,即可求出结果;

2)先由在区间上恒成立,得到,即命题;再由题意,得到一真一假,分别讨论假,真两种情况,即可得出结果.

1)若命题为真命题,则函数在定义域上单调递增,

上恒成立,

,即

2)若在区间上恒成立,则在区间上恒成立,

因此,只需;即命题

由命题“”为真命题,”为假命题,可知一真一假,

假,则,无解;

,,即

综上所述,,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是矩形,侧面是正三角形,.

(1)求证:平面平面

(2)若中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数,若关于的方程8个不等的实数根,则的取值范围是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求的值域;

(2)若存在唯一的整数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.

(Ⅰ)求得分在上的频率;

(Ⅱ)求社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在间的人数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l:y=2x﹣1与双曲线)相交于A、B两个不

同的点,且(O为原点).

(1)判断是否为定值,并说明理由;

(2)当双曲线离心率时,求双曲线实轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如上图所示,在正方体中, 分别是棱的中点, 的顶点在棱与棱上运动,有以下四个命题:

A.平面 ; B.平面⊥平面

C 在底面上的射影图形的面积为定值;

D 在侧面上的射影图形是三角形.其中正确命题的序号是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且过点P

(1)求椭圆的标准方程;

(2)已知斜率为1的直线l过椭圆的右焦点F交椭圆于A.B两点,求弦AB的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,为等边三角形, ,为边的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案