精英家教网 > 高中数学 > 题目详情

【题目】三角形面积为S=(a+b+c)r,a,b,c为三角形三边长,r为三角形内切圆半径,利用类比推理,可以得出四面体的体积为 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h为四面体的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径,设四面体的内切球的球心为O,则球心O到四个面的距离都是r)

【答案】D

【解析】

根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可

设四面体的内切球的球心为O,则球心O到四个面的距离都是r,
根据三角形的面积的求解方法:分割法,将O与四顶点连起来,
可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,V=(S1+S2+S3+S4) ·r·
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三年级有1000人,某次数学考试不同成绩段的人数

(1)求该校此次数学考试平均成绩;

(2)计算得分超过141的人数;

(3)甲同学每次数学考试进入年级前100名的概率是,若本学期有4次考试, 表示进入前100名的次数,写出的分布列,并求期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司准备将万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润(万元)的概率分布列如表所示:

的期望;若投资乙项目一年后可获得的利润(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为.若乙项目产品价格一年内调整的次数(次数)与的关系如表所示:

Ⅰ)求的值;

Ⅱ)求的分布列;

Ⅲ)若该公司投资乙项目一年后能获得较多的利润,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若,不等式有且只有两个整数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高几何?” 意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为平面内的四点,且A(1,3),B(2,–2),C(4,1).

(1)若,求D点的坐标;

(2)设向量,若k+3平行,求实数 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若,求的值.

)在中,角的对边分别是,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,在空间中到三条棱所在直线距离相等的点的个数( )

A. 0B. 2C. 3D. 无数个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是(

A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐

B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐

C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐

D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐

查看答案和解析>>

同步练习册答案