【题目】设A,B,C,D为平面内的四点,且A(1,3),B(2,–2),C(4,1).
(1)若
,求D点的坐标;
(2)设向量
,
,若k
–
与
+3
平行,求实数
的值.
【答案】(1)D(5,–4);(2)k=–
.
【解析】
(1)设D(x,y),
∵A,B,C,D为平面内的四点,且A(1,3),B(2,–2),C(4,1).如图,
![]()
∴由
,得(2,–2)–(1,3)=(x,y)–(4,1),
即(1,–5)=(x–4,y–1),
∴
,解得x=5,y=–4,∴D(5,–4).
(2)∵
=(1,–5),
=(2,3),
∴k
–
=k(1,–5)–(2,3)=(k,–5k)–(2,3)=(k–2,–5k–3),
又
+3
=(1,–5)+3(2,3)=(1,–5)+(6,9)=(7,4),
且k
–
与
+3
平行,
∴7(–5k–3)–4(k–2)=0,解得k=–
.
∴实数k的值为–
.
科目:高中数学 来源: 题型:
【题目】某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为
立方米,且分上下两层,其中上层是半径为
(单位:米)的半球体,下层是半径为
米,高为
米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为
千元.
参考公式:球的体积
,球的表面积
,其中
为球的半径.
![]()
(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)当半径
为何值时,每座帐篷的建造费用最小,并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂每月生产一种投影仪的固定成本为
万元,但每生产
台,需要加可变成本(即另增加投入)
万元,市场对此产品的月需求量为
台,销售的收入函数为
(万元)
且
,其中
是产品售出的数量(单位:百台).
(1)求月销售利润
(万元)关于月产量
(百台)的函数解析式;
(2)当月产量为多少时,销售利润可达到最大?最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三角形面积为S=
(a+b+c)r,a,b,c为三角形三边长,r为三角形内切圆半径,利用类比推理,可以得出四面体的体积为 ( )
A. V=
abc B. V=
Sh
C. V=
(ab+bc+ac)·h(h为四面体的高) D. V=
(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径,设四面体的内切球的球心为O,则球心O到四个面的距离都是r)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,
,
分别为椭圆的上顶点和右焦点,
的面积为
,直线
与椭圆交于另一个点
,线段
的中点为
.
(1)求直线
的斜率;
(2)设平行于
的直线
与椭圆交于不同的两点
,
,且与直线
交于点
,求证:存在常数
,使得
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
![]()
根据该走势图,下列结论正确的是( )
A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化
B. 这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭园C:
+
=1(a>b>0)的左、右焦点分别为F1,F2.且椭圆C过点(
,-
),离心率e=
;点P在椭圆C 上,延长PF1与椭圆C交于点Q,点R是PF2中点.
(I )求椭圆C的方程;
(II )若O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com