精英家教网 > 高中数学 > 题目详情
2.△ABC中,a、b、c分别是三内角A、B、C的对边,若$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC}$=1.解答下列问题:
(1)求证:A=B;
(2)求c的值;
(3)若$|\overrightarrow{AB}+\overrightarrow{AC}|=\sqrt{6}$,求△ABC的面积.

分析 (1)根向量数量积的定义转化为三角形的边角公式,利用正弦定理进行证明即可.
(2)利用余弦定理进行求解,
(3)根据向量数量积的模长公式结合三角形的面积公式进行计算.

解答 证明:(1)因$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC}$,故bccosA=accosB,即bcosA=acosB.
由正弦定理,得sinBcosA=sinAcosB,故sin(A-B)=0,
因为-π<A-B<π,
故A-B=0,故 A=B.…(4分)
(2)因$\overrightarrow{AB}•\overrightarrow{AC}=1$,故bccosA=1,由余弦定理得$bc•\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=1$,
即b2+c2-a2=2;又由(1)得a=b,
故c2=2,故$c=\sqrt{2}$.…(10分)
(3)由$|\overrightarrow{AB}+\overrightarrow{AC}|=\sqrt{6}$得$|\overrightarrow{AB}{|^2}+|\overrightarrow{AC}{|^2}+2|\overrightarrow{AB}•\overrightarrow{AC}|=6$,
即c2+b2+2=6,
故c2+b2=4,因c2=2,故$b=\sqrt{2}$,
故△ABC是正三角形,
故面积${S_{△ABC}}=\frac{{\sqrt{3}}}{4}×{(\sqrt{2})^2}=\frac{{\sqrt{3}}}{2}$.…(16分)

点评 本题主要考查向量数量积的应用,利用正弦定理,余弦定理以及三角形的面积公式是解决本题的关键.考查了向量与三角函数的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=loga(x-1)+1(a>0,且a≠1)的图象过定点(b,f(b)),则(x2-3x+b)5的展开式中,x的系数是(  )
A.-240B.-120C.0D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|(x-3)(1-x)>0},B={x|y=lg(2x-3)},则A∩B=(  )
A.(3,+∞)B.[$\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.盛有水的圆柱形容器的内壁底面半径为5cm,两个直径为5cm的玻璃小球都浸没于水中,若取出这两个小球,则水面将下降(  )cm.
A.$\frac{2}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的高为(  )
A.2B.3C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P是函数y=sin(2x+θ)图象与x轴的一个交点,A,B为P点右侧同一周期上的最大值和最小值点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(  )
A.$\frac{\sqrt{3}π^2}{4}$-1B.$\frac{3π^2}{4}$-1C.$\frac{3π^2}{16}$-1D.$\frac{π^2}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设$f(x)=\frac{1}{{1+{2^x}}}-1$,则f(1)+f(-1)=-1,f(2)+f(-2)=-1,f(3)+f(-3)=-1则根据上述结果,可以提出猜想:f(n)+f(-n)=-1(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用秦九韶算法计算f(x)=2x4+3x3+5x-4在x=2的值时,v3的值为33.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线W的顶点在原点,且焦点为F(1,0),不经过焦点F的直线l与抛物线W相交于A,B两点,且抛物线W上存在一点C,使得四边形ACBF为平行四边形.
(I)求抛物线W的标准方程;
(Ⅱ)求证:直线l恒过定点;
(Ⅲ)求四边形ACBF面积的最小值.

查看答案和解析>>

同步练习册答案