分析 (1)利用代入法,求线段AB的中点M的轨迹方程;
(2)由题意知,圆心C(-1,0)到L的距离为$\frac{1}{\sqrt{2}}$CD=$\sqrt{2}$.由点到直线的距离公式得$\frac{|-k-k+3|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,求出k,即可求直线l的方程.
解答 解:(1)设A(x1,y1),M(x,y),
由中点公式得x1=2x-1,y1=2y-3
因为A在圆C上,所以(2x)2+(2y-3)2=4,即x2+(y-1.5)2=1
点M的轨迹是以(0,1.5)为圆心,1为半径的圆;
(2)设L的斜率为k,则L的方程为y-3=k(x-1),即kx-y-k+3=0
因为CA⊥CD,△CAD为等腰直角三角形,
由题意知,圆心C(-1,0)到L的距离为$\frac{1}{\sqrt{2}}$CD=$\sqrt{2}$.
由点到直线的距离公式得$\frac{|-k-k+3|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,
∴4k2-12k+9=2k2+2
∴2k2-12k+7=0,解得k=3±$\frac{\sqrt{22}}{2}$.
点评 本题考查轨迹方程,考查直线与圆位置关系的运用,正确运用代入法求轨迹方程是关键.
科目:高中数学 来源: 题型:选择题
| A. | 270x-1 | B. | 270x | C. | 405x3 | D. | 243x5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{n}$ | B. | $\frac{n}{n+1}$ | C. | $\frac{1}{n+1}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com