精英家教网 > 高中数学 > 题目详情
5.函数$f(x)=ln({x-\frac{1}{x}})$的图象是(  )
A.B.C.D.

分析 求出函数的定义域,排除选项,利用函数的单调性判断求解即可.

解答 解:函数$f(x)=ln({x-\frac{1}{x}})$,可得x$-\frac{1}{x}>0$,可得x>1或-1<x<0,
排除选项A,D;
当x>1时,y=x-$\frac{1}{x}$是增函数,由复合函数的单调性可知,函数$f(x)=ln({x-\frac{1}{x}})$,x>1是增函数,
排除C,
故选:B.

点评 本题考查函数的图象的判断,函数的定义域以及函数的单调性的常用判断方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合M={x|(x-3)(x+1)≤0},N={x|-2≤x≤2},则M∩N=(  )
A.[-1,2]B.[-2,-1]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1的两个焦点分别为F1,F2,其一条渐近线的方程为y=x,若点P(m,1)在双曲线上,则$\overrightarrow{PF}$$•\overrightarrow{P{F}_{2}}$的值是(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},若A∪B={-2,1,5},A∩B={-2},求p+q+r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x|+a,g(x)=2|x-1|.
(Ⅰ)若a=0,解不等式f(x)≥g(x);
(Ⅱ)若对任意x∈R,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个命题中真命题是(  )
A.同垂直于一直线的两条直线互相平行
B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱
C.过空间任一点与两条异面直线都垂直的直线有且只有一条
D.过球面上任意两点的大圆有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB是⊙O的直径,PA⊥⊙O所在的平面,C是圆上一点,∠ABC=30°,PA=AB=4.
(1)求证:平面PAC⊥平面PBC;
(2)求直线PC与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2-4x+5在区间[-1,m]上的最大值为10,最小值为1,则实数m的取值范围是(  )
A.[2,+∞)B.[2,4]C.[-1,5]D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z满足(1-i)z=3+i,则z=(  )
A.1+2iB.2+2iC.2-iD.1+i

查看答案和解析>>

同步练习册答案