精英家教网 > 高中数学 > 题目详情
8.执行如图所示的程序框图,若要使输出的y的值等于3,则输入的x的值可以是(  )
A.1B.2C.8D.9

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数y=$\left\{\begin{array}{l}{\stackrel{{x}^{2}-1}{{3}^{x}}}&{\stackrel{x≤1}{1<x≤2}}\\{lo{g}_{2}x}&{x>2}\end{array}\right.$的函数值,由y=3,分类讨论即可得解.

解答 解:根据流程图所示的顺序,可知:该程序的作用是计算分段函数y=$\left\{\begin{array}{l}{\stackrel{{x}^{2}-1}{{3}^{x}}}&{\stackrel{x≤1}{1<x≤2}}\\{lo{g}_{2}x}&{x>2}\end{array}\right.$的函数值.
y=3,可得:
当x≤1时,x2-1=3,解得:x=-2或2(舍去);
当1<x≤2时,3x=3,解得:x=1(舍去);
当x>2时,log2x=3,解得:x=8.
比较各个选项,则输入的x的值可以是8.
故选:C.

点评 本题主要考查程序框图的应用,分清条件结构是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在直角坐标系中,如果不同的两点A(a,b),B(-a,-b)都在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作同一组),函数g(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{lo{g}_{2}(x+1),x>0}\end{array}\right.$,关于原点的中心对称点的组数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为原点,抛物线y=3-x2(y≥0)和平行于x轴的直线交于不同两点A、B,那么当△ABO的面积达到最大值时,A、B的坐标分别为(  )
A.(3,1)(-2,1)B.(0,1)(1,1)C.(1,0)(-1,0)D.(1,2)(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:AB⊥C1F;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}是等差数列,{bn}是各项均为正数的等比数列,若a1=b1=1,a1+a2+a3=a5,b1+b2+b3=a4,则a5+b5=(  )
A.10B.15C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正项数列{an}满足an+1(an+1-2an)=9-a${\;}_{n}^{2}$,若a1=1,则a10=28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{{\begin{array}{l}{a{{(x-1)}^2}+1,}&{x≥0}\\{{2^{-x}},}&{x<0}\end{array}}\right.$
①若f(f(-1))=0,则实数a=-1;
②在①的条件下,若直线y=m与y=f(x)的图象有且只有一个交点,则实数m的取值范围是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有7位歌手(1至7号)参加一场歌唱比赛,由550名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:
组别ABCDE
人数5010020015050
(Ⅰ) 为了调查大众评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入表.
组别ABCDE
人数5010020015050
抽取人数6
(Ⅱ) 在(Ⅰ)中,若A,C两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,在矩形ABCD中,AB=5,BC=4,E为DC上一点,且DE=3.沿AE将△ADE折起,得到一个四棱锥D-ABCE.如图2,F为DB上一点,且CF∥平面DAE.
(1)求CF的长;
(2)若DB=3,求四棱锥D-ABCE的体积.

查看答案和解析>>

同步练习册答案