精英家教网 > 高中数学 > 题目详情
2.如图,在棱长为a的正方体ABCD-A′B′C′D′中,M、N分别是棱A′B′、B′C′的中点,P是棱AD上一点,AP=$\frac{a}{3}$,过P、M、N的平面与棱CD交于Q,则PQ的长度为$\frac{2\sqrt{\sqrt{2}}}{3}$a.

分析 如图所示,连接AC,A′C′.由正方体可得:四边形ACC′A′是矩形.M、N分别是棱A′B′、B′C′的中点,可得MN∥A′C′,由面面平行的性质定理可得MN∥PQ.可得PQ∥AC,$\frac{PQ}{AC}$=$\frac{DP}{AD}$,即可得出.

解答 解:如图所示,连接AC,A′C′.
由正方体可得:四边形ACC′A′是矩形.
∴AC∥A′C′.
∵M、N分别是棱A′B′、B′C′的中点,∴MN∥A′C′.
平面A′B′C′D′∥底面ABCD,又过P、M、N的平面与棱CD交于Q,
∴MN∥PQ.
∴PQ∥AC,∴$\frac{PQ}{AC}$=$\frac{DP}{AD}$=$\frac{2}{3}$,
又AC=$\sqrt{2}$a,
∴PQ=$\frac{2\sqrt{2}}{3}$a.
故答案为:$\frac{2\sqrt{2}}{3}$a.

点评 本题考查了正方体的性质、线面面面平行的判定与性质定理、平行线分线段成比例定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}的前n项和为Sn,若a3=4,S3=7,则S6的值为(  )
A.31B.32C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有$f(x-\frac{3}{2})=f(x+\frac{1}{2})$,当x∈[0,2)时,f(x)=ex-1,则f(2016)+f(-2017)=(  )
A.-1-eB.e-1C.1-eD.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3-6x2+9x,g(x)=$\frac{1}{3}$x3-$\frac{a+1}{2}$x2+ax-$\frac{1}{3}$(a>1)若对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),则实数a的取值范围为(  )
A.(1,$\frac{9}{4}$]B.[9,+∞)C.(1,$\frac{9}{4}$]∪[9,+∞)D.[$\frac{3}{2}$,$\frac{9}{4}$]∪[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面α∩平面β=l,直线m?α,且m∩l=P,则(  )
A.β内必存在直线与m平行,存在直线与m垂直
B.β内必不存在直线与m平行,必存在直线与m垂直
C.β内必不存在直线与m平行,且不存在直线与m垂直
D.β内必存在直线与m平行,不存在直线与m垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,CE⊥BD于E
(Ⅰ) 求证:BD⊥AC;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.$\frac{{tan{{12}°}+tan{{18}°}}}{{1-tan{{12}°}•tan{{18}°}}}$=(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知焦点在y轴上的双曲线C的中心是原点O,离心率等于$\frac{{\sqrt{5}}}{2}$,以双曲线C的一个焦点为圆心,2为半径的圆与双曲线C的渐近线相切,则双曲线C的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{y^2}{4}-{x^2}=1$C.${y^2}-\frac{x^2}{4}=1$D.$\frac{y^2}{16}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点(3,6)的直线被圆x2+y2=25截得的弦长为8,这条直线的方程是(  )
A.3x-4y+15=0B.3x+4y-33=0C.3x-4y+15=0或x=3D.3x+4y-33=0或x=3

查看答案和解析>>

同步练习册答案