精英家教网 > 高中数学 > 题目详情
在锐角三角形ABC中,角A,B,C的对边分别是a,b,c,a=2bsinA,a=3
3
,c=5,则b=(  )
分析:已知等式利用正弦定理化简,根据sinA不为0求出sinB的值,确定出B的度数,进而求出cosB的值,再由a,c的值,利用余弦定理即可求出b的值.
解答:解:∵a=2bsinA,
∴由正弦定理得sinA=2sinBsinA,
∵角A为三角形的内角,
∴sinA≠0,
∴sinB=
1
2

∵△ABC为锐角三角形,
∴B=
π
6

∵a=3
3
,c=5,cosB=
3
2

∴根据余弦定理得b2=a2+c2-2accosB=27+25-45=7,
则b=
7

故选B
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,且a=2bsinA.
(1)求∠B的大小;
(2)若a=3
3
,c=5
,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足
3
a-2bsinA=0

(Ⅰ)求角B的大小;
(Ⅱ)若b=
7
,c=2,求
AB
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,a,b,c分别是角A、B、C的对边,
p
=(a+c,b),
q
=(c-a,b-c)且
p
q

(1)求A的大小;
(2)记f(B)=2sin2B+sin(2B+
π
6
)
,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南充一模)在锐角三角形ABC中,角A,B,C对边a,b,c且a2+b2-
2
ab=c2,tanA-tanB=csc2A
①求证:2A-B=
π
2

②求三角形ABC三个角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:在锐角三角形ABC中,?A,B,使sinA<cosB;命题q:?x∈R,都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题;           
②命题“¬p∨q”是真命题;
③命题“¬p∨¬q”是假命题;       
④命题“p∧¬q”是假命题;
其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案