分析 根据函数成立的条件结合三角函数的取值范围进行求解即可.
解答 解:(1)要使函数有意义,则$\left\{\begin{array}{l}{tanx≠0}\\{x≠kπ+\frac{π}{2},k∈Z}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠kπ}\\{x≠kπ+\frac{π}{2},k∈Z}\end{array}\right.$,
即x≠kπ且x≠kπ+$\frac{π}{2}$,即函数的定义域为{x|x≠kπ且x≠kπ+$\frac{π}{2}$},k∈Z.
(2)要使函数有意义,则$\left\{\begin{array}{l}{sinx≥0}\\{x≠kπ+\frac{π}{2}}\end{array}\right.$,
即$\left\{\begin{array}{l}{2kπ≤x≤2kπ+π}\\{x≠kπ+\frac{π}{2}}\end{array}\right.$,k∈Z,
则2kπ≤x≤2kπ+π,且x≠2kπ+$\frac{π}{2}$,k∈Z
即函数的定义域为{x|2kπ≤x≤2kπ+π,且x≠2kπ+$\frac{π}{2}$},k∈Z.
点评 本题主要考查函数的定义域的求解,根据三角函数的取值范围建立不等式关系是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{{\sqrt{15}}}{16}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com