精英家教网 > 高中数学 > 题目详情
17.四面体ABCD的四个顶点均在半径为2的球面上,若AB,AC,AD两两垂直,$\overrightarrow{BA}•\overrightarrow{BC}=2$,则四面体ABCD.体积的最大值为$\frac{7\sqrt{2}}{6}$.

分析 由题意,$\overrightarrow{BA}$•$\overrightarrow{BC}$=c2=2,则a2+b2+2=16,利用基本不等式,可得ab≤7,利用体积公式,即可求出四面体ABCD体积的最大值.即可求出四面体体积的最大值.

解答 解:由题意,$\overrightarrow{BA}$•$\overrightarrow{BC}$=c•$\sqrt{{c}^{2}+{a}^{2}}$•$\frac{c}{\sqrt{{c}^{2}+{a}^{2}}}$=c2=2,
∵a2+b2+c2=16,
∴a2+b2=14≥2ab,
∴ab≤7,
∴四面体ABCD体积V=$\frac{1}{3}$×$\frac{1}{2}$abc=$\frac{\sqrt{2}}{6}$ab≤$\frac{7\sqrt{2}}{6}$,
∴四面体ABCD体积的最大值$\frac{7\sqrt{2}}{6}$,
故答案为:$\frac{7\sqrt{2}}{6}$

点评 本题考查四面体ABCD体积的最大值,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(1)若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,求|2$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)若tanθ=3,求$\frac{{5{{sin}^3}θ+cosθ}}{{2{{cos}^3}θ+{{sin}^2}θcosθ}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△abc中,若a=$\sqrt{3}$,A=$\frac{π}{3}$.则b+c的取值范围$(\sqrt{3},2\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,已知圆A的圆心在直线y=-2x上,且该圆存在两点关于直线x+y-1=0对称,又圆A与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
(1)求圆A的方程;
(2)当$|{MN}|=2\sqrt{19}$时,求直线l的方程;
(3)($\overrightarrow{BM}$+$\overrightarrow{BN}$)•$\overrightarrow{BP}$是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知M是关于x的不等式x2+(a-4)x-(a+1)(2a-3)<0的解集,且M中的一个元素是0,求实数a的取值范围,并用a表示出M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=f(x)满足f(a+x)+f(a-x)=2b(其中a,b不同时为0),则称函数y=f(x)为“准奇函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:
①函数f(x)=sinx+1是准奇函数;
②若准奇函数y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)-f(a)为R上的奇函数;
③已知函数$f(x)=sin({2x-\frac{π}{3}})+2$是准奇函数,则它的“中心点”为$({\frac{π}{3}+kπ,2})$
④已知函数f(x)=x3-3x2+6x-2是准奇函数,则它的“中心点”为(1,2);
其中正确的命题是①②④(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-2$\overrightarrow{b}$|=1,则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)=(  )
A.-1B.4C.9D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的定义域:
(1)y=tanx+$\frac{1}{tanx}$;
(2)y=$\sqrt{sinx}$+tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=$\frac{1}{3}$x2+$\frac{2}{3}$x.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在二次函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anan+1cos[(n+1)π](n∈N*),数列{bn}的前n项和为Tn,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;
(Ⅲ)在数列{an}中是否存在这样一些项:a${\;}_{{n}_{1}}$,a${\;}_{{n}_{2}}$,a${\;}_{{n}_{3}}$,…,a${\;}_{{n}_{k}}$这些项都能够
构成以a1为首项,q(0<q<5)为公比的等比数列{a${\;}_{{n}_{k}}$}?若存在,写出nk关于f(x)的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案